OR per standard deviation是standard什么意思思

dispersion
[d?'sp?:?(?)n]
[d?'sp??n]
n. 散布;[统计][数] 离差;驱散
正版书籍/物理/高考完全解读:(课标版)(王后雄考案2013版) ... 全反射和临界角(total refraction.critical angle) 光的色散(dispersion) 光的干涉(interference) ...
基于778个网页-
分子生物学词汇 ... disperse system|分散系统 dispersion|分散;色散 dispersion force|分散力;色散力 ...
基于584个网页-
中文:分散系;英语:Dispersion;
基于500个网页-
分子生物学词汇 ... disperse system|分散系统 dispersion|分散;色散 dispersion force|分散力;色散力 ...
基于431个网页-
分散关系式
分散性测度
分散性衡量指标
离散度量数
更多收起网络短语
- 引用次数:169
The dispersion properties of photonic crystal fibers are investigated theoretically in the present dissertation.
本论文从理论上对光子晶体光纤的色散特性进行了研究。
参考来源 -
- 引用次数:20
The broad-band wireless data transmission must handle the effect brought by the multi-path time-delay extending and the Doppler Shift. These negative effects are produced by time dispersion and frequency dispersion of the mobile radio channel.
宽带无线数据传输需要解决移动信道的时间弥散和频率弥散特性所带来的多径时延扩展以及多普勒频移。
参考来源 -
- 引用次数:35
参考来源 -
- 引用次数:25
In this thesis . based on the accurate six freedom degrees kinetic equations of the air rocket, an optimizing model of calculating air rocket dispersion is established .
本文在精确的六自由度运动方程的基础上,建立了计算航空火箭弹散布的优化模型。
参考来源 -
- 引用次数:20
The simulation results show that there is no marked difference for dispersion index if the ammunition is reduced from forty salvo to twelve salvo.
仿真结果表明,将1组齐射40发减少到1组齐射12发,密集度指标无显著性差异。
参考来源 -
- 引用次数:13
参考来源 -
- 引用次数:85
Conclusion:P dispersion is a reliable index to predict AF and AR.
结论:P波离散度是预测AF和AR体表心电图的一个可靠指标。
参考来源 -
(炎症等的)消散;胶体溶液
- 引用次数:25
By using these mehods, some numerical example has been shown to investigate the factors, which effect dispersion and H/V curves.
通过对上海市典型场地土层的计算分析,研究了影响频散曲线和H/V曲线的诸因素。
参考来源 -
- 引用次数:11
Sanitary LCAdvection-dispersionCation adsoCation diffusioGeoenvironmental characterEffectivLeachate recirculation.
垃圾填埋场;粘土衬垫;对流-弥散迁移模型;粘土吸附性;粘土中离子扩散;环境土工特性;衬垫防污效果;渗滤液回灌。
参考来源 - 粘土的环境土工特性及垃圾填埋场衬垫性状研究
(动、植物群落的)分布类型
频散;分散体;漂移
离差,差量
&2,447,543篇论文数据,部分数据来源于
dispersion
[ dis'p?:??n ]
spreading widely or driving off
the spatial property of being scattered about over an area or volume
the act of dispersing or diffusing something
&the dispersion of the troops&
以上来源于:
dispersion
[dis'p?:??n]
[亦作dispersal]
分散,消散,扩散,散开,解散,疏开,疏散,驱散,溃散;散布;传播
被分散,被驱散的状态
【物理学】色散;弥散;频散
【物理化学】分散质;分散体系[亦作disperse system]
【数学】离差,差量
【统计学】离中趋势,离散度
【军事】射弹散布
【医学】(炎症等的)消散;胶体溶液
【生态学】(动、植物群落的)分布类型
[the Dispersion](古犹太人被巴比伦人驱逐出故土后的)大流散(=Diaspora)
更多收起结果
以上来源于:《21世纪大英汉词典》
dispersion
/d?'sp?:??n/
Dispersion is the spreading of people or things over a wide area. (对人群的)驱散; 散布
[oft N 'of' n]
The threat will force greater dispersion of their forces.
这桩恐吓将迫使他们士气骤减。
色散关系;分散关系;频散关系
[物]反常色散
[化]分散介质
分散度,离散程度
热散射;热分散
水动力扩散;水动力的分散
[化]分散剂
[化]胶态分散体;[化]胶体分散系
价格离散;价格差别
角色散;角分散
更多收起词组短语
n. 散布;[统计][数]离差;驱散
散布的;被分散的;被驱散的
分散的;弥散的
分散;传播;散布;疏散;消失
分散;传播(disperse的过去分词)
分散;使散开;传播
So how do these outliers and dispersion affect the values of the mean and standard deviation?
那么这些异常值和分散度是怎么影响度量值和标准偏差的呢?
Further, their dispersion was in a relatively small area: they might go out as a fleet, to destroy a superior enemy in detail.
更要命的是,德国舰队散布在很小的区域里:他们可以很快的集结出海去消灭一支强大的敌军。
But what has caused this great dispersion of wealth?
但是,是什么导致了财富的差距如此之大呢?
We also need some measure of-- We've been talking here about measures of central tendency only and in finance we need, as well, measures of dispersion, which is how much something varies.
我们也需要其他的指标,目前为止,我们只讨论了集中趋势指标,在金融学中,我们同样需要,离散趋势指标以衡量参数的变化程度
So, that completes central tendency and dispersion.
这样我们就介绍完了集中趋势和离散趋势
The hedge fund world is 7.1% first to third quartile, real estate 9.3% per annum, leveraged buyouts 13.7% per annum this is over a ten-year period, so now we're starting to talk about some pretty significant dispersion.
在对冲基金中,这个差距有7.1%,不动产投资中的差距是9.3%,杠杆收购中是每年13.7%,以上都是十年期收益,我们现在谈的是,一些显著的差距
This dispersion was used to dip-coat strips of filter paper, rendering the paper conductive.
Look at the range (or dispersion) of analysts' forecasts around the consensus—an uncertainty measure.
Why is this dispersion occurring, given that so many Asians come from densely packed cities?
色散关系;分散关系;频散关系
[物]反常色散
[化]分散介质
分散度,离散程度
热散射;热分散
水动力扩散;水动力的分散
[化]分散剂
[化]胶态分散体;[化]胶体分散系
价格离散;价格差别
角色散;角分散
更多收起词组短语
$firstVoiceSent
- 来自原声例句
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!4166人阅读
技术文献(1)
该文档分析了2013年6次RAN1会议中有关D2D的提案,分析的绝大部分提案是在会议report中noted的。
Deployment Scenario and Evaluation Methodology
1)&&&&&&&R1-130029 HuaweiHiSilicon
l& 提出了三种场景(其中只有第二和第三种场景是noted的)
n& 网络覆盖下的,高密度用户分布
n& 网络覆盖下的,低密度用户分布
n& 无网格覆盖的,特别低密度的用户分布
l& 给出了场景1和2下的仿真参数
Parameters
Scenario 1
Scenario 2
Device density
10,000/km2
Up to 20 dBm (100 mW)
Up to 23 dBm
Evaluation
Discovery (DMC optional)
Discovery and DMC
l& 可采用eIMTA中的快衰模型
2)&&&&&&&R1-130061 CATT
l& 提出的场景:
n& 隔离的室内分布(InH)
n& 同分布的网络场景
l& 提出的分析标准
n& D2D Discovery范围、蜂窝用户吞吐量/SINR降低量,不同距离下的总体吞吐量
l& 另外提出了D2D撒点的方法
3)&&&&&&&R1-130133 ZTE
l& D2D discovery的目标发现距离分为三个等级:近、中等、远
l& 信道模型
n& 对于LOS
n& 对于NLOS,可采用基于xia的室外宏蜂窝模型
l& Metrics: 开销、效率、覆盖范围、功率消耗
4)&&&&&&&R1-130304 Samsung
l& Metrics: 发现的UE数量、吞吐量、公平指数
l& 场景:城市微小区、城市宏小区、室内热点
l& 信道模型:
n& Channel models definedfor LTE-advanced (based on Rec. ITU-R M.2135)
n& Channel models basedon IST-WINNER II (and WINNER +)
n& Channel models basedon Rec. ITU-R P.1411
n& Channel models basedon TETRA system
5)&&&&&&&R1-130502 Nokia
n& D2D与宏蜂窝共信道
n& D2D与small cell共信道与macro不共信道
n& D2D、small cell、macro三个都不共信道
l& 当D2D与常规的蜂窝共用载波时,D2D可重用上行或下行的资源。在TDD/FDD的情况下使用那种资源有待进一步研究
l& 考虑室外-室外,室内-室内,室内-室外的场景
l& 尽可能地重用TR36.828的信道模型
l& 在网络的覆盖下,优先考虑同步的D2D操作
l& 重用TR36.814中的业务模型,应优先考虑非full-buffer模型
6)&&&&&&&R1-130599 Qualcomm
l& 提出了非公共安全和公共安全的使用情况
l& 提出的metrics
n& 关于discovery的metrics:发现的用户数,资源使用情况,功率消耗
n& 关于communication的metrics:吞吐量,时延,资源使用情况
n& 公共安全服务的metrics:同步所需时间
7)&&&&&&&R1-130676 CMCC
l& 提出了三种场景
n& 发送端和接收端都在室外
n& 发送端和接收端都在室内
n& 发送端和接收端都一个在室外一个在室内
l& 使用以下的信道模型
If R&=50m, PL=98.45+20*log10(R), R inkm
If R&50m, PL=55.78 +40*log10(R), R in m(Xia model)&[2]
可使用TU or ITU 模型
Channel model
Alt 1: D2D transmitters and receivers locate outside the building
Alt 2: transmitter and receiver locate inside the building
InH NLOS/LOS
Alt 3: Transmitter and receiver are separated between indoor and outdoor
Scenarios and Evaluation Methodology
1)&&&&&&&R1-131166 Huawei,HiSilicon(noted)
l& 提出两种discovery方式
n& eNB辅助discovery(无需链路级仿真)
n& UE间直接discovery(需要链路级仿真)
n& 链路级仿真参数表
Parameters
Assumptions
System bandwidth
Carrier frequency
Channel model
Under discussion, but should include indoor-to-indoor, outdoor-to-outdoor, and indoor-to-outdoor
Antenna configuration
2 antennas, in cross-polarization configuration
l& 按照距离远近提出三种场景,如下
Parameters
Short range
Medium range
Long range
Device density
10,000/km2
Up to 20 dBm
Up to 23 dBm
Up to 30 dBm
l& 由于场景太多,运营商应选择合适的场景来指导SI work
l& 对于long rang场景不进行系统级评估,只进行链路级预算分析
l& 把PS场景作为初步研究重点
l& 对于discovery和communication需研究以下场景
n& Indoor-to-indoor: short-range
n& Indoor-to-outdoor: long-range, medium range
n& Outdoor-to-outdoor: long range, medium range
l& 优先考虑在网络覆盖内的情况,但
n& 至少考虑一种不在网络覆盖之内的场景
n& 至少考虑一种被混合网络覆盖的场景
l& 提出两种metrics
n& 被发现的设备与时间的曲线
n& 被发现的设备之间的距离分布曲线
n& 系统仿真参数
Parameters
Assumptions
System bandwidth
Carrier frequency
Inter-site distance (eNBs)
500 m for dense/medium UE density, 1 km for low density
eNB deployment
The typical 19-cell and 3-sectored hexagon system layout
Minimum distance between UE and Macro
UE antenna gain
UE noise figure
UE Antenna pattern:
Shadowing correlation between UEs
UE sensitivity level
UE-to-UE pathloss and channel configuration
See companion contribution [2]
UE transmit power
20 dBm for consumer, 30 dBm for public safety
l& 对于directmobile communications (DMC)
n& 需要计算蜂窝系统和DMC的吞吐量,与没有DMC时的蜂窝系统吞吐量做出比较
n& 设置在一个小区内DMC连接的数量(如1,2,5)
n& 设定给DMC分配的资源比例(25%,50%,75%)
n& 计算所有设备之间的干扰
l& 如何判定哪些UE参与DMC连接,三种可能
n& 同一覆盖网络下的两个随机UE
n& 第一个UE附近有热点覆盖
n& D2D对之间是固定的距离,被随机抽取
l& 需要考虑用哪个频带,三种可能
n& 使用上行频带
n& 使用下行频带
n& 使用专用的频带
l& 使用与small cell相同的通信模型(trafficmodel)
2)&&&&&&&R1-131686 Samsung(noted)
l& 建议D2D场景采用Urbanmacro-cell with dual-strip model
l& 初步着重评估简单的场景:urbanmacro场景,UE全部为室外
l& 提出D2D部署场景(在网络覆盖范围内)
Deployment scenario for the evaluation
Urban Macro Scenario
Indoor scenario
Hexagonal grid, 19 cell sites, 3 sectors per site, wrap around
(considering macro model in 36.814)
Dual-strip model containing two buildings with 2 floors. Each building contains 20 rooms of 10 m x 10 m each floor
(considering HeNB model in 36.814)
Inter-site distance (ISD)
200m, 500 m
(considering UMi, UMa in 36.814)
Non-D2D link model
outdoor to outdoor
Indoor to outdoor
D2D link model
Outdoor to outdoor
Indoor to outdoor
Indoor A to indoor A
Indoor A to indoor B
l& Discovery的度量和相关的SA要求
Related requirements in TR22.803
Discovery Range
[PR.4] ProSe Discovery shall support a minimum of three range classes – for example short, medium and maximum range.
Power consumption and spectral efficiency
[PR.7] The impact of ProSe Services (Discovery and Communications) on radio usage, network usage and battery consumption should be minimized.
Number of discoverable UEs
[PR.43] ProSe Discovery and Communication shall take into account the potentially large numbers of concurrently participating ProSe-enabled UEs.
Impact to legacy services
[PR.125] ProSe Communication and ProSe Discovery shall not adversely affect other E-UTRAN services.
Link reliability
No requirements
l& 对于directcommunication的metric
n& 在没有D2D和有D2D场景下的吞吐量cdf曲线比较,D2D不同算法间的吞吐量变化比较
n& 对于directcommunication最有用的场景为VoIP,所以应评估VoIP的capacity,如一个小区内VoIP连接的数目和中断率
Related requirements in TR22.803
D2D throughput
[PR.7] The impact of ProSe Services (Discovery and Communications) on radio usage, network usage and battery consumption should be minimized.
VoIP system capacity
[PR.43] ProSe Discovery and Communication shall take into account the potentially large numbers of concurrently participating ProSe-enabled UEs.
Impact to legacy services
[PR.125] ProSe Communication and ProSe Discovery shall not adversely affect other E-UTRAN services.
l& D2D场景图
Figure1: D2D scenario inside network coverage
l& D2D评估假设参数
Deployment scenario for the evaluation
Urban Macro Scenario
Indoor scenario
Hexagonal grid, 19 cell sites, 3 sectors per site, wrap around
(macro model in 36.814)
Dual strip model containing two buildings with 2 floors. Each building contains 20 rooms of 10 m x 10 m each floor
(HeNB model in 36.814)
Dropped randomly in each cell
Inter-site distance (ISD)
200m, 500 m
(considering Umi, Uma in 36.814)
Non-D2D link model
Outdoor to outdoor
Indoor to outdoor
D2D link model
(each channel model should be defined separately)
Outdoor to outdoor
Indoor to outdoor
Indoor A to indoor A
Indoor A to indoor B
System bandwidth
Carrier frequency
Carrier number
Total BS TX power
UE TX power
BS Antenna Height:
UE antenna Height
D2D resource
UL resource
Number of D2D UEs
Peer discovery: 20, 50, 100 UEs
Direct communication: 10, 25, 50 pairs of UEs
Number of non-D2D UEs
Uniformly random
Network synchronization
Baseline is synchronized
UE antenna
3)&&&&&&&R1-131037 Samsung(noted)
&&&&&&&&&&&
(a)&&& Out of network coverage&&&&&&&&&&&&&&&&&&&&&&&& (b) Partial networkcoverage
Figure 1: D2D scenarios
1: Deployment scenarios and simulation parameters for out of networkcoverage and partial network coverage
Out of network coverage
Partial network coverage
Hexagonal grid,
two-tier with 19 cell sites, and wrap around structure
Hexagonal grid
with 2 cell sites
Inter-site distance
Number of UEs
Peer discovery
100 UEs per grid
Total 100 UEs
Direct communication
30 UEs per grid
Total 30 UEs
&(15, 15)*
5 groups per grid
6 UEs in each group, (1Tx, 5Rx)
1 group in the layout
30 UEs in the group (15, 15)*
UE dropping
Peer discovery
Uniformly random
Uniformly random
Direct communication
Uniformly random with pairs
or groups within a grid
Uniformly random with pairs
or groups across cells
D2D link model
Outdoor to outdoor
Outdoor to outdoor
Synchronization
All UEs are synchronized.
All UEs are synchronized.
System bandwidth
Carrier frequency (GHz)
Carrier number
Antenna pattern
UE antenna Height (m)
Traffic models for direct communication
Full Buffer, VoIP
Full Buffer, VoIP
Antenna configuration
* In (x, y), xis the number of UEs in networkcoverage and y is thenumber of UEs out of network coverage.
l& 在每个场景下,除了UEs的数目和UE的撒点对于peer discovery和direct communication是不同的,其他参数都是相同的
l& 评估的重点放在所有的户外终端
l& 对于ProSe discovery的metric
n& 可靠性,需要评估false alarm rate
n& Discovery的UE数目
n& 需评估UE的电量消耗情况
l& 对于ProSe direct communication
n& 公平性指数
n& VoIP capacity
4)&&&&&&&R1-131412 Qualcomm Inc(noted)
l& 提出两种场景
General Scenario
PS Scenario
Network coverage
100% UEs in-coverage
{0% UEs in coverage (out-of-network),
50% eNodeBs disabled (partial coverage)}
Carrier Frequency (GHz)
System Bandwidth (MHz)
10 (FDD), 20 (TDD)
System Synchronization
Synchronized
Non-synchronized
Non-clustered
Clustered around events
{3, X*} km/hr indoor
{3, 120} km/hr outdoor
*Note that X heredenotes values that are TBD
Table 1: Summary of proposeddeployment scenarios
General Scenario
PS Scenario
Network coverage (%)
100% UEs are in-coverage
{0% UEs in-coverage (out-of-network),
50% eNodeBs disabled (partial coverage)}
Carrier Frequency (GHz)
System Bandwidth (MHz)
10 (FDD), 20 (TDD)
System Synchronization
Synchronized
Non-synchronized
Non-clustered
Clustered around events
{3,X} km/hr indoor
{3, 120} km/hr outdoor
Additional Simulation Parameters
See Table 2
See Table 3
Deployment Layout
Heterogeneous network 3GPP Case 5.3 (Macro + Indoor RRH/Hotzone) [2]
o&&& Macro: 3GPP Case 1 [2]
o&&& Indoor hotspot: As per Section A.2.1.1.5 in [2]
4 indoor hotspot per macro-cell, uniform in macro-cell area
Channel Model
Traffic Model
Full buffer, FTP and VoIP
Unidirectional traffic for Unicast and Broadcast
Multidirectional traffic for Groupcast
2: Additionalsimulation parameters for general scenario
Legacy Ues
Number of legacy UEs per macro cell
Fraction of legacy UE indoor
{0.35, 0.80}
Discovery UEs**
Number of discovery devices per sector
{50, 100, 500}
Fraction discovery devices indoor
{0.35, 0.80}
Communication Links*
Number of unicast links per sector
Fraction of unicast transmitters indoor
{0.35, 0.80}
Number of groupcast UE groups per sector
Fraction of groupcast UE groups with the first UE of the group& dropped indoor
{0.35, 0.80}
Number of UEs that belong to a groupcast UE group
Number of broadcast UE groups per sector
Fraction of broadcast transmitters indoor
{0.35, 0.80}
Intended fanout of broadcast transmission
* Note:when evaluating& a mix of unicast links,groupcast UE groups, and broadcast UE groups, use only the lowest number oflinks/groups proposed& in each case.
** Note:when evaluating high number of discovery UEs, a 7-cell macro layout may beused.
3: Additionalsimulation parameters for public safety specific scenario
Event Clusters
Number of clusters per macro-cell
Cluster radius
Fraction of cluster centres that lie within an indoor hotspot
{0.35, 0.80}
Discovery UEs**
Number of discovery devices per cluster
{50, 100, 500}
Communication Links*
Number of unicast links per cluster
Number of groupcast UE groups per cluster
Number of UEs that belong to a groupcast UE group
Number of broadcast UE group per cluster
Intended fanout of broadcast transmission
*Note:when evaluating& a mix of unicast links, groupcastUE groups, and broadcast UE groups, use only the lowest number of links/groupsproposed& in each case.
** Note:when evaluating high number of discovery UEs, a 7-cell macro layout may beused.
5)&&&&&&&R1-131430 NTT DOCOMO(noted)
Table I. Categorization of D2D Deployment Scenarios
Public / Non-public safety
NW coverage
In-band / Out-band
Observation
General scenarios (applicable to both)
In NW coverage
o&&&& Support of inter-operator operability would be more challenging
o&&&& Impact on legacy cellular system should be considered
o&&&& Might be more suited for unified solution between public and non-public safety
Public safety specific scenarios
Out of NW coverage / partial NW coverage
o&&&& Technical differences between out of NW coverage and partial NW coverage should be clarified
Figure 1.D2D deployment scenarios
l& UE进行D2D操作时应该保持同步,这样可以避免不断地搜索带来的电量损耗
l& General case的需求
n& Discovery和communication
ü& 支持很多UE
ü& 能耗效率
ü& 资源效率
ü& 对传统UE最小影响
n& Discovery
ü& 支持最少三种范围
ü& Location serviceenhancement
l& Public safety case的需求
n& Discovery和communication
ü& 支持室内/外
ü& 没有对传统UE影响
n& Communication
ü& 支持direct communication
ü& 支持组播和广播
ü& 支持中继
l& 性能指标
n& Discovery和communication
ü& 资源效率
ü& UE功耗效率
ü& 对WAN的影响
ü& Discovery的可靠性
n& Discover
ü& Discovery的UE数目
ü& Discovery范围
ü& 距离/范围估计精度
n& Communication
ü& 频谱效率
l& 不能采用全双工方式
l& 对于在NW覆盖下的in-band D2D,复用蜂窝上行资源对于资源利用来说是优先选择
6)&&&&&&&R1-131621 Ericsson,ST-Ericsson(noted)
l& 链路级仿真采用EPA、ETU mode
l& 不要把discover作为communication的先决条件
l& 评估groupcommunication
l& 仿真两种场景:Suburban(A)和UrbanHotspot(B)
1: Summary of scenarios definitions
A: Suburban scenario
B: Urban hotspot scenario
Macro NW with 2 antennas/sector
Macro NW with 2 antennas/sector
UEs with 1tx/2rx
UEs with 1tx/2rx
Cellular network: deployed according to ITU Suburban Macro (1299m ISD, hexagonal grid, SMa model). 7 cells generated with wrap-around.
Cellular network: deployed according to ITU Urban Macro (500m ISD, hexagonal grid, Uma model). 7 cells generated with wrap-around.
D2D channel model from [4]
D2D channel model from [4]
Uniform UE density (50% indoors, 50% vehicle)
Hotspot UE density (indoor/outdoor and floor assignment follow model in Section 4.1))
UE speed: indoor UEs 3km/h, vehicle UEs 90km/h
UE speed: 3km/h
In-band D2D Operation
In-band D2D Operation
UE Emission model from [5]
UE Emission model from [5]
A1:full NW coverage
A2: partial NW coverage (a subset of the macros is enabled)
A3: no NW coverage
A1:full NW coverage
A2: partial NW coverage (a subset of the macros is enabled)
A3: no NW coverage
Carrier frequency: 700 MHz (NSPS), 2 GHz
Carrier frequency: 700 MHz (NSPS), 2GHz
l& 为商业评估划出一个子集
l& 对于suburban采用均匀撒点
n& 50%车内UE,50%室内UE
l& 对于urbanhotspot场景采用热点分布撒点
7)&&&&&&&R1-131715 Qualcomm, USDepartment of Commerce, General Dynamics Broadband, ZTE, Samsung, RIM, Fujistu,III, ITRI
l& D2D部署
8)&&&&&&&R1-131747 Qualcomm, USDepartment of Commerce, General Dynamics Broadband UK, RIM, Fujistu, III, NEC
l& discovery Metrics
l& communication metrics
9)&&&&&&&R1-131755 Alcatel-Lucent,Alcatel-Lucent Shanghai Bell(noted)
l& 两个场景(general和public safety scenarios)
六边形网络,19或者7小区,3扇区
n& Option 1: Urban macro(500m ISD) + {1} RRH/Indoor Hotzone per cell
n& Option 2: Urban macro(500m ISD) + {1} Dual stripe per cell
n& Option 3: Urban macro(500m ISD) -- all UEs outdoor
n& Option 4: Urban macro(500m ISD) + {3} RRH/Indoor Hotzone per cell
n& Option 5: Urban macro(1732m ISD) (UE dropping details FFS)
n& Option 6: Urban micro(100m ISD)
Table 1: UEdropping and association for unicast, group cast, broadcast, and Relay
General Scenarios
Public Safety Scenarios
LTE Layout
Option 1 (mandatory)
Others optional in order of decreasing priority:
Option 2 / Option 3
Option 5 (mandatory)
Others optional in order of decreasing priority:
Total number of active UEs per (active) cell
25 for options 1,2,4
10 for options 3,5,6
Number of D2D UEs for discovery
Number of D2D UEs for communication
UE drop for discovery and communication
For Layout option 1,2, 4:- 2/3 UEs randomly and uniformly dropped within the clusters of small cell(s), 1/3 UEs randomly and uniformly dropped throughout the macro geographical area.
a)&&&& 20% UEs are outdoor and 80% UEs are indoor.for option 1,2,4
For Layout option 3, 5, 6 –
a)&& Uniform drop - all UEs are randomly and uniformly dropped throughout the macro geographical area
b)&& Hotspot drop – Randomly select an area within each macro geographical area.& Randomly and uniformly drop 2/3 UEs within 40 m of the selected area.& Randomly and uniformly
drop the remaining 1/3 UEs to the entire macro geographical area of the given macro cell
UE association for unicast D2D communication
Random pairing: First UE is randomly selected from all UEs within entire 19/7 macro sites and 2nd UE is randomly selected from the remaining UEs within entire 19/7 macro sites&
2nd UE will be re-selected with constraint of minimum RSRP between two UEs if RSRP is less than X dBm (FFS)& when UE is transmitted at maximum power
UE association for group cast D2D communication
Random pairing: First UE is randomly selected as the UE for group cast from all UEs within entire 19/7 macro sites
&All Y number of receivier UEs are randomly selected from the remaining UEs within entire 19/7 macro sites&
·&&&&& FFS-Number of receiver UEs “Y”
·&&&&& UEs will be re-selected& with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm(FFS) when UEs are transmitted at maximum power
UE association for broadcast D2D communication&
Random pairing: First UE is randomly selected as the UE for group cast from all UEs within entire 19/7 macro sites
&All Y number of receivier UEs are randomly selected from the remaining UEs within entire 19/7 macro sites&
·&&&&& Number of receiver UEs “Y”
·&&&&& UE will be re-selected& with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm when UE is transmitted at maximum power
UE association for Relay D2D communication
First UE is randomly selected from all UEs without eNB coverage and 2nd UE is selected from the UEs within eNB coverage
FFS: 2nd UE will be re-selected with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm when UE is transmitted at maximum power
Minimum distance between UE and eNB
Minimum distance between UEs
10)&&&& R1-131413Qualcomm Incorporated(nottreated)
l& 该提案提出的metrics和其他公司提出的相似,但是conclusion不明确
11)&&&& R1-131762Fujistu, Qualcomm, US DOC(noted)
l& Network coverage基于eNB和UE的RF配置,包括带宽、发射功率、发射和接收天线数目(参考TR36.888的方法)
l& 对于10MHz的FDD,基站天线是4发4收,手机是1发2收,用以下下行SINR阈值来决定network coverage
UE power (dBm)
DL SINR (dB)
12)&&&& R1-131754NTT DOCOMO, US Department of Commerce, Vodafone, KDDI, Deutsche Telekom, CMCC,Ericsson, ST-Ericsson, Qualcomm, ZTE, ITRI(noted)
l& It is preferable tohave a common technical solution that accommodates both consumer and PSrequirements
Channel Model
1)&&&&&&&R1-131768 Qualcomm, USDepartment of Commerce, General Dynamics Broadband UK, ITRI, Fujitsu, Intel,Samsung, ZTE, III(noted)
Remaining Details of Scenarios and Evaluation Methodology
1)&&&&&&&R1-132719 Qualcomm(noted)(该提案为重点)
l& 部署场景总结:
n& Option 1: Urban macro(500m ISD) + 1 RRH/Indoor Hotzone per cell
n& Option 2: Urban macro(500m ISD) + 1 Dual stripe per cell
n& Option 3: Urban macro(500m ISD) (all UEs outdoor)
n& Option 4: Urban macro(500m ISD) + 3 RRH/Indoor Hotzone per cell
n& Option 5: Urban macro(1732m ISD)
n& Option 6: Urban micro(100m ISD)
Table A.2.1.1: Details ofDeployment Scenarios
General Scenarios
Public Safety Scenarios
LTE Layout
Option 1 shall be mandatory
Others layouts are optional in order of decreasing priority:
Option 2 / Option 3
Option 5 shall be mandatory
Others layouts are optional in order of decreasing priority:
Carrier Frequency
(Note: The performance at 2GHz is expected to be different from the performance at 700MHz.)
System bandwidth
10MHz Uplink and 10MHz Downlink for FDD, 20 MHz for TDD
Network operation
100% eNodeBs enabled
{0, x (FFS)}%& eNodeBs enabled
(Note that x may be 100%)
FFS whether disabled eNodeBs are selected randomly or deterministically
UE out of coverage criterion
Average SINR & {-x} dB over system bandwidth.
Network synchronization
All cases shall be treated with equal priority:
-&&&&&&&&& all eNodeBs synchronized
-&&&&&&&&& eNodeBs on different carriers not synchronized
-&&&&&&&&& eNodeBs on a given carrier not synchronized
UE mobility
{3,X} km/hr
120 km/hr for {X} fraction of outdoor UEs
{3,X} km/hr for other UEs
UE RF parameters
Max transmit power of& 23 dBm for non public safety, 23 dBm, 31 dBm for public safety
1 Tx (2 Tx optional for public safety only), 2 Rx antenna, Antenna gain 0 dBi, Noise figure 9 dB
eNodeB RF parameters
As specified in 3GPP Case 1, except for Option 5 which uses parameters as specified in 3GPP Case 3 (Table A.2.1.1.1 of [3])
Non D2D traffic
With probability {X}, a D2D UE has non D2D (downlink & uplink) traffic.
WAN traffic source shall be FTP2.
Number of D2D UEs for discovery
Number of D2D UEs for communication
UE drop for all UEs, for both discovery and communication evaluations
For layout options 1,2, 4:
2/3 UEs randomly and uniformly dropped within the clusters of small cell(s). Remaining 1/3 UEs randomly and uniformly dropped throughout the macro geographical area.
20% UEs are outdoor, and 80% UEs are indoor.
For layout option 3, 5, 6:
Uniform drop : all UEs are randomly and uniformly dropped throughout the macro geographical area
Hotspot drop :
Randomly select an area within each macro geographical area. Randomly and uniformly drop 2/3 UEs within 40 m of the selected area. Randomly and uniformly drop the remaining 1/3 UEs to the entire macro geographical area of the given macro cell.
Additionally for layout option 5:
Drop 2 RRH buildings (without RRHs) in each macro geographical area. (See A.2.1.1.5 in [3])
All UEs randomly and uniformly dropped throughout the macro geographical area such that 20% UEs are outdoor, and 80% UEs are indoor.
UE association for unicast D2D communication
Random pairing: First UE is randomly selected from all UEs within entire 19/7 macro sites and 2nd UE is randomly selected from the remaining UEs within entire 19/7 macro sites.
If random pairing does not lead to target number of unicast D2D& link 2nd UE shall be re-selected with constraint of minimum RSRP between two UEs if RSRP is less than X dBm (FFS; in the meantime, companies may choose the value, including
- )& when UE is transmitted at maximum power.
UE association for groupcast D2D communication
Random pairing: First UE is randomly selected as the UE for group cast from all UEs within entire 19/7 macro sites. All Y number of receiving UEs are randomly selected from the remaining UEs within entire 19/7 macro sites. If random pairing
does not lead to target number groupcast groups then UEs shall be re-selected& with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm (FFS; in the meantime, companies may choose the value, including - ) when UEs are transmitted at maximum
The number of receiver UEs ‘Y’ is FFS.
UE association for broadcast D2D communication&
Random pairing: First UE is randomly selected as the UE for broadcast from all UEs within entire 19/7 macro sites. All Y number of receiver UEs are randomly selected from the remaining UEs within entire 19/7 macro sites. If random pairing does
not lead to target number groupcast groups then UE shall be re-selected& with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm (FFS; in the meantime, companies may choose the value, including - ) when UE is transmitted at maximum power.
The number of receiver UEs ‘Y’ is FFS.
UE association for Relay D2D communication
First UE is randomly selected from all UEs without eNodeB coverage and 2nd UE is selected from the UEs within eNodeB coverage
Minimum distance between UE and eNodeB
&=35m (except for Option 6 where it shall be 5m)
Minimum distance between UEs
l& 通信模型(traffic model)
采用full buffer、VoIP、FTP2[3GPP TS 36.814 V9.0.0,“Further advancements for E-UTRA physical layer aspects (Release 11)”]
l& Metrics for discovery
n& Number of UEsdiscovered as a function of time. This shall be a system level metric.
n& CDF of number of UEsdiscovered as a function of time. This shall be a system level metric.
n& Probability ofdiscovery as a function of time. Zero time penalty shall be assumed for eachfalse alarm. This shall be a system level metric.
n& Probability ofdiscovery vs. pathloss. This shall be both a link & system level metric.
n& Probability of false alarm.This shall be both a link & system level metric.
n& Amount of resourceused for discovery per cell if in network coverage. This shall be a systemlevel metric.
n& FFS metrics related tothroughput loss and/or interference.
n& Power consumptionmodeled through ON time or equivalent power consumed. Transmit power should becaptured differently than received power. Detailed model FFS.
l& 需要注意:
n& Time shall be measuredfrom start of simulation without prior synchronisation.
n& Unless explicitlystated same metrics shall be used for in-network, partial network and out ofnetwork coverage scenarios with possibly different emphasis.
n& Same metrics shall beused for public safety and non-public safety cases with possibly differentemphasis.
l& Metrics forcommunication
n& For full buffertraffic model: mean, 5%, and CDF of user throughput. This shall be a systemlevel metric.
n& For FTP2 traffic model:mean, 5%, and CDF of perceived user throughput. This shall be a system levelmetric.
n& For VOIP traffic model:VOIP system capacity. The VOIP delay requirement shall be {X} ms. This shall bea system level metric.
n& Performance versuspathloss or distance. Performance shall be in terms of either user throughput,perceived user throughput, or probability of satisfied VOIP user depending ontraffic model. This shall be both a link and system level metric. For linklevel
performance use only full buffer.
n& Physical layer latencyfor call setup for out of coverage only. This should only model L1 higher layer aspects should be considered in RAN2. This shall be botha link and system metric.
n& Change in cellthroughput/cell spectral efficiency for full buffer traffic model. This shallbe a system level metric.
n& CDFs of perceivedper-user throughput for FTP2 with and without D2D. This shall be a system levelmetric.
n& Power consumpt detailed model is FFS.
l& 需要注意:
n& Same metrics shall beused for in-network, partial network and out of network coverage scenarios.
n& Same metrics shall beused for public safety and non-public safety cases with possibly differentemphasis.
n& Same metrics shall beused for unicast, groupcast and broadcast with each receiver countedseparately.
2)&&&&&&&R1-132458 Ericsson,ST-Ericsson(noted)(该提案提出的UE功耗模型为重点)
l& Public safetyscenarios的带宽是10MHz
l& 不在基站覆盖下的UE接收信号强度&-120dBm,PSS/SSS Es/Iot&-6dB
l& 以上准则需在所有的D2D场景中使用,使UEs能够被蜂窝系统服务
l& 总的UE数目是指宏小区范围内的UE数目
l& 每个想进行D2D通信的UE对被随机的选择,如果两个UE恰好在D2D范围内,它们可能会进行D2D通信
l& 如果对高速移动的UE进行建模,RAN1应该讨论合适的移动模型
l& 功耗模型:
n& 功耗模型适用于discovery和communication,但是相应的参数值不同
n& General和public safety场景使用相同的功耗,模型和参数设置如下:
Table 1: Example power consumption model parameters
E.g., cell search
Inactive state of DL RX, i.e., only maintaining clock, memory, etc.
For UE transmitting at &0 dBm
For UE transmitting at 0 dBm
For UE transmitting at 5 dBm
For UE transmitting at 10 dBm
For UE transmitting at 20 dBm
For UE transmitting at 23 dBm
For UE transmitting at &23 dBm (public safety UEs only, with the maximum output power of 31 dBm)
Receiving in UL, i.e., D2D activity
Inactive state of UL RX
GPS power consumption included only for solutions requiring GPS-based synchronization
3)&&&&&&&R1-132065 Alcatel-Lucent,Alcatel-Lucent Shanghai Bell(noted)
l& public safety场景使用5MHz的带宽
l& out-of coverage场景下所有基站不能参与,部分覆盖场景有50%的基站不能参与
l& 决定UE为out-of coverage的标准为-6dB
l& 对于UE的移动性,需要考虑0km/h的情况
l& 简单起见,研究D2D时不需要对emission mask建模
l& 激活UE的总数目应该和LTE-A的一样,对于同构网络,每个小区有10个用户,对于异构网络,每个小区有25个用户
l& discovery的UE数目应为激活UE数目的3倍
l& 对于open discovery,D2D communication的UE数目为激活UE数目的40%。对于network assisted,D2D communication的数目由调度策略决定
l& 建议10%的D2D用户同时并行参与LTE network通信
l& RSRP门限值不应被确定,应由具体的调度策略在仿真的时候确定
l& 组播接收UE的数目为3
l& 广播接收UE在具体仿真时确定
Table 1:&Simulation parameters for D2D discovery and communication
General Scenarios
Public Safety Scenarios
LTE Layout
Option 1: Urban macro (500m ISD) + {1} RRH/Indoor Hotzone per cell
Option 2: Urban macro (500m ISD) + {1} Dual stripe per cell
Option 3: Urban macro (500m ISD) -- all UEs outdoor
Option 4: Urban macro (500m ISD) + {3} RRH/Indoor Hotzone per cell
Option 5: Urban macro (1732m ISD) (UE dropping details FFS)
Option 6: Urban micro (100m ISD)
Option 1 (mandatory)
optional in order of decreasing priority:
Option 2 / Option 3
Option 5 (mandatory)
Others optional in order of decreasing priority:
Carrier Frequency*
10MHz (FDD), 20 MHz (TDD) **
Network Operation
100% eNBs enabled
0, x (FFS)}%& eNodeB enabled( x may be 100%)
FFS disabled eNBs are selected randomly or deterministically
UE out of coverage criterion
Average SINR & {-x (-6dB working assumption – can be revisited at RAN1#73)} dB over system bandwidth.
UE mobility
{3,X} km/hr
120 km/hr for {x} fraction of outdoor UEs
{3,X} km/hr for other UEs
UE RF parameters
o&&&&&& Max Tx power& 23 dBm
o&&&&&& 1 Tx 2 Rx antenna,
o&&&&&& Antenna gain 0 dBi,
o&&&&&& &Noise figure 9 dB
o&&&&&& Max Tx power 23 dBm, 31 dBm
o&&&&&& 1 Tx (2 Tx optional), 2 Rx antenna
o&&&&&& &Antenna gain 0 dBi
o&&&&&& &Noise figure 9 dB
eNB RF parameter
3GPP case 1
3GPP case 1 (case 3 for option 5)
Network Synchronization
With equal priority:
o&&&&&& all eNodeBs synchronized
o&&&&&& eNodeBs on different carriers not synchronized
o&&&&&& eNodeBs on a given carrier not synchronized
Traffic model
Full buffer or FTP-2 in 36.814
Emission mask
FFS under what circumstances (if any) if needed, as per 36.101 s.6.5.2.3
Total number of active UEs per cell area
Starting point:
25 for options 1,2,4
10 for options 3,5,6
Number of D2D UEs for discovery
Number of D2D UEs for communication
Minimum distance between UE and eNB
&=35m (except for Option 6& is 5 m)
Minimum distance between UEs
UE drop for all UEs, for both discovery and communication evaluations
For Layout option 1,2, 4:- 2/3 UEs randomly and uniformly dropped within the clusters of small cell(s), 1/3 UEs randomly and uniformly dropped throughout the macro geographical area.
a)&&&&&& 20% UEs are outdoor and 80% UEs are indoor.
For Layout option 5, UEs randomly and uniformly dropped throughout the mac 20% UEs are outdoor and 80% UEs are indoor. Drop 2 RRH buildings (without RRHs) in each macro geographical area.
For Layout option 3, 5, 6 –
a)&&&&&& Uniform drop - all UEs are randomly and uniformly dropped throughout the macro geographical area
b)&&&&&& Hotspot drop – Randomly select an area within each macro geographical area.& Randomly and uniformly drop 2/3 UEs within 40 m of the selected area.& Randomly and uniformly drop the remaining 1/3 UEs to the entire macro geographical area
of the given macro cell
Non D2D traffic
a)&&&&&& With probability {X}, a D2D UE has non D2D (downlink & uplink) traffic.
b)&&&&&& WAN traffic is FTP2
Table 2: Simulation parametersfor device pairing for different deployment scenarios
General Scenarios
Public Safety Scenarios
UE association for unicast D2D communication
Random pairing: First UE is randomly selected from all UEs within entire 19/7 macro sites and 2nd&UE is randomly selected from the remaining UEs within entire 19/7 macro sites&
2nd&UE will be re-selected with constraint of minimum RSRP between two UEs if RSRP is less than X dBm (FFS; in the meantime, companies may choose the value, including -? )& when UE is transmitted at maximum power
UE association for group cast D2D communication
Random pairing: First UE is randomly selected as the UE for group cast from all UEs within entire 19/7 macro sites
&All Y number of receiving UEs are randomly selected from the remaining UEs within entire 19/7 macro sites&
·&&&&&&&& FFS-Number of receiver UEs “Y”
·&&&&&&&& UEs will be re-selected& with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm (FFS; in the meantime, companies may choose the value, including - ?) when UEs are transmitted at maximum power
UE association for broadcast D2D communication&
Random pairing: First UE is randomly selected as the UE for group cast from all UEs within entire 19/7 macro sites
&All Y number of receivier UEs are randomly selected from the remaining UEs within entire 19/7 macro sites&
·&&&&&&&& FFS: Number of receiver UEs “Y”
·&&&&&&&& UE will be re-selected& with constraint of minimum RSRP between two UEs if the RSRP is less than X dBm (FFS; in the meantime, companies may choose the value, including - ?) when UE is transmitted at maximum power
l& D2D对系统性能的影响可以通过系统级仿真总吞吐量简单地计算出来
l& 对D2D discovery和communication使用的平均电量进行功率消耗的建模
l& Discovery Metrics
3: Performance matrix for D2D discovery
Performance target
Open discovery:
-&&&&&&&&& Number of UEs discovered as a function of time (system)
-&&&&&&&&& CDF of number of UEs discovered as a function of& time (system)
Closed discovery (i.e. knowing the UEs to be discovered):
-&&&&&&&&& Probability of discovery as a function of time (assume zero time penalty for each false alarm)
(Time measured from start of simulation without prior synchronisation)
Range & reliability
Prob. of discovery vs pathloss (link & system)
Prob. of false alarm (link & system)
Impact on WAN
Amount of resource used (system) (per cell if in network coverage)
FFS metrics related to throughput loss and/or interference
Power consumption modeled through ON time or equivalent power consumed (transmit power should be captured differently than received power --detailed model FFS)
*Samemetrics used for in-network, partial network and out of network with possibledifferent emphasis
*Samemetrics used for public safety and non-public safety cases with possibledifferent emphasis.
l& Communication Metrics
Table 4: Performance matrix for D2D communication
D2D Throughput
/spectral efficiency
User throughput (mean, 5%, CDF) for full buffer (system) Perceived user throughput (mean, 5%, CDF) for FTP (system)
VOIP system capacity (system) (VOIP delay requirement {X}ms)
Range and Reliability
Performance** vs pathloss or distance (link and system)
For link level, use only full buffer
&Call setup latency
Phy. layer latency for call setup for out of coverage only (link and system)
(This should only model L1 higher layer aspects should be considered in RAN2)
Impact on WAN
Change in cell throughput/cell spectral efficiency (system)
Cdfs of perceived per-user throughput for FTP2 with and without D2D
Power consumption
Power consumptio detailed model is FFS
*Samemetrics used for in-network, partial network and out of network
*Samemetrics used for public safety and non-public safety cases with possibledifferent emphasis.
*Samemetrics used for unicast, groupcast and broadcast with each receiver countedseparately
**Performance means throughput, perceived throughput, prob. of satisfied VOIPuser depending on traffic model
4)&&&&&&&R1-132500 QualcommIncorporated, US Department Of Commerce(noted)
l& 使用R1-131747中提出的D2D信道模型,并参考其中的表1
l& 关于部署场景的变更:
n& 确保仿真所有的场景使用wrap-around
n& 为了评估D2D性能,small cell的节点(如pico和femto等)不应被仿真
l& UE的撒点进行一下修改
n& 对于option1,2,5(室内外混合撒点情况),35%是室内,剩下的是室外
l& 使用下表的参数
Total number of active UEs per cell area*
Indoor-outdoor mix**
{15} + (#D2D UEs)
Indoor-outdoor mix**
{15} + (#D2D UEs)
Uniform (outdoor)
{10} + (#D2D UEs)
For other layout options: FFS
Number of D2D UEs for discovery per cell area*
Indoor-outdoor mix**
Indoor-outdoor mix**
Uniform (outdoor)
{50, 100, 400}
For other layout options: FFS
Number of receiver UEs for broadcast and groupcast (Y)
Groupcast: {5, 10}
Broadcast: {10,75} for uniform (outdoor) {10} for indoor-outdoor mix drop.
Number of D2D UEs for communication per cell area*
Unicast: {5, 25} * 2
Groupcast: {2, 5} * Y
Broadcast: {2, 5} * (1+Y)
where Y is the ‘number of receiver UEs’ parameter listed above.
Minimum RSRP constraint for UE association
l& 在对部分覆盖建模时,只使用中心eNB
l& 对于全覆盖和部分覆盖的场景,使用10MHz FDD或20MHz的TDD,对于不覆盖场景,使用10MHz专用频带
l& 对于UE移动性,使用表5中的参数,包括一个改动,在PS场景,限制室外UE最大运动速度为60km/h
l& 同频带内信号发射功率会均匀的分配给所有的子载波
l& D2D communication使用VoIP的time budget:150ms(无中继)
l& 功率消耗模型与不同的发射/接收功率有关,也与能量开销有关
5)&&&&&&&R1-132560 GeneralDynamics Broadband UK(noted)(该提案有仿真结果)
l& 每个扇区的UE数目应该比10大
l& 链路重选的FFS constrain,如果两个UE间的路损大于120dB,然后应该重新选择第二个UE,这适用于UE的发射功率为23dBm
l& RRH building的场景,室外用户的比例至少为50%
Table 1 - Evaluation Assumptions for simulation
PS Specific Scenario Value
Option 5 - Urban macro (1732m ISD)
19 site, 3 sectors per site
Carrier Frequency
Network operation
0 % eNodeB enabled 1
UE RF parameters
1 Tx, 2 Rx antenna, Antenna gain 0 dBi, Noise figure 9dB
Table 2 - Evaluation Assumptions for UE dropping andassociation
PS Specific Scenario Value
Option 5 - Urban macro (1732m ISD)
Total number of active UEs per cell area
Number of D2D UEs for communication
Case 1: UEs randomly and uniformly dropped throughout the mac 20% UEs are outdoor and 80% UEs are indoor. Drop 2 RRH buildings (without RRHs) in each macro geographical area.
Case 2: Uniform drop - all UEs are randomly and uniformly dropped throughout the macro geographical area
Case 3: Hotspot drop – Randomly select an area within each macro geographical area.& Randomly and uniformly drop 2/3 UEs within 40 m of the selected area.& Randomly and uniformly drop the remaining 1/3 UEs to the entire macro geographical area of the given
macro cell
UE association for unicast D2D communication
Random pairing: First UE is randomly selected from all UEs within entire 19 macro sites and 2nd UE is randomly selected from the remaining UEs within entire 19 macro sites&
2nd UE will be re-selected if the path loss between the two UEs is greater than 120dB
UE association for group cast D2D communication
Random pairing: First UE is randomly selected as the UE for group cast from all UEs within entire 19 macro sites
&All Y number of receiving UEs are randomly selected from the remaining UEs within entire 19 macro sites&
·&&&&& FFS-Number of receiver UEs “Y”
·&&&&& UEs will be re-selected if the path loss between
the two UEs is greater than 120dB
Table 3 - Mean number of links and Mean % of UEs inrange
Mean number of links
Mean % of UEs in range
O2O case 2, 10 UEs
O2O case 2, 27 UEs
O2O case 3, 10 UEs
O2O case 3, 27 UEs
Figure 1 – Outdoor tooutdoor Simulation case 2.&& UEs/sector =10
Figure 2 – Outdoor to outdoor Simulation case 2.&& UEs/sector = 27
Figure 3 – Outdoor to outdoor Simulation case 3.&&& UEs / sector = 10
Figure 4 – Outdoor to outdoor Simulation case 3.&& UEs/sector = 27
6)&&&&&&&R1-132695 LGElectronics, LG Uplus, Qualcomm, General Dynamics Broadband UK(noted)
n& 对于public safety specific场景
n& 系统带宽
ü& 全覆盖(in-coverage)和部分覆盖(partial coverage)场景:10MHz(FDD),20MHz(TDD)
ü& 不覆盖(out-of-coverage)场景:10MHz专用频谱
n& 对于部分网络覆盖的网络的措施
ü& 中心宏基站enable,剩余的disabled
n& 不覆盖场景标准
ü& 平均SINR-6dB
n& WAN traffic UE
ü& 如果不覆盖场景下UE产生WAN traffic,并且UE找不到一个或更多的中继UE,那么WAN traffic will be dropped
n& UE association
ü& UE中继:第一个UE从不覆盖的所有UE中随机选择,覆盖下的第二个UE的选择方法也应为设计方案的一部分
7)&&&&&&&R1-132718 QualcommInc., General Dynamics Broadband UK, US Dept.of Commerce, Fujitsu, III(notnoted)
l& UE的撒点和association
* Note that a cell refers to asector of the geographical macro-cell (hexagon).
** Active UEs are UE with WAN traffic
***AUE can be part of only at most one unicast link
****AUE can be part of only at most one groupcast group
l& 指标和场景
8)&&&&&&&R1-132722 QualcommInc.(noted)
l& UE撒点和association
*Notethat a cell refers to a sector of the geographical macro-cell (hexagon)
**ActiveUEs are UE with WAN traffic
***WorkingAssumption: The unicast traffic will flow from the first selected UE to thesecond selected UE
9)&&&&&&&R1-132754 ALU, ASB,Ericsson, Hi-Silicon, Huawei, ST-Ericsson(noted)
l& 对于广播和组播,discovery并不是必要地步骤
l& 对于组播,并不是说组内的所有UE都必须临近
l& 为了仿真,组播是一个UE对两个或更多组内UE的单向通信
10)&&&& R1-132759Qualcomm, Fujitsu, US Department of Commerce, General Dynamics Broadband(noted)
l& 发射接收功率
n& Sleep功率=0.01 unit每子帧
n& 接收功率=1unit每子帧
n& 发射功率
ü& 31dBm时,20unit每子帧
ü& 0dBm时,1unit每子帧
n& GPS功率=0.08unit每子帧
n& 对于D2D discovery和D2D communication和WAN signaling使用相同的值
11)&&&& R1-132769Ericsson, ST-Ericsson, ALU, ASB, Hi-Silicon, Huawei(noted)
l& 与之前分析过的提案R1-132754相同,只是增加了如下一点:
l& 广播是first UE向所有其他UE的单向通信
12)&&&& R1-132804Ericsson, ST-Ericsson, USDoC(noted)
l& 仿真组播和广播
n& 每个小区撒3 groupcasting (broadcasting) UEs
n& 根据R1-132722通过的最小RSRP准则,每个组撒9个接收UE
13)&&&& R1-132810Qualcomm Inc., Huawei, HiSilicon, General Dynamics Broadband UK, III(noted)
对于unicast
l& 每次仿真只能仿真一种D2D communication方式
l& Unicast
n& 根据TR规定的撒点准则撒first UE
n& 根据TR规定的撒点准则撒second UE
ü& Second UE直到满足RSRP准则才重新撒
对于groupcast
l& 每个cell(宏小区的一个扇区)有3个组
l& 每个组有10个UE
n& 1个发射UE,9个接收UE
l& 根据TR定义的撒点准则撒发射UE
l& 根据TR定义的撒点准则撒接收UE
n& 接收UE直到满足RSRP准则才重新撒
对于broadcastoption 1
l& 每个小区有3组broadcast sessions
l& 每broadcast sessions有10个UE
n& 1个发射UE,9个接收UE
n& 其撒点方式同groupcast
对于broadcastoption 2
l& 每个cell有3个broadcast transmitters
l& 每个小区有24个UEs
n& 3个发射UEs,剩下的是接收UEs
14)&&&& R1-132750LG Electronics, LG Uplus, Qualcomm(noted)
l& 为了保证不被覆盖UE有足够的数量,建议使用ITU信道模型
Table 1 Percentage ofout-of-coverage UE (uniform UE drop, ISD=1732m)
Percentage of out of coverage UE
Case 1) ITU channel, with wraparound
Case 2) ITU channel, without wraparound
Case 3) 3GPP channel, with wraparound
Case 4) 3GPP channel, with wraparound
l& 对于部分覆盖场景,建议使用19小区3扇区,并且使用wraparound,即下图所示
Figure 1 Proposed 3-site clustered eNB enabling pattern
Channel Model
1)&&&&&&&R1-131895 CATT(noted)
l& 该提案总结了信道模型
Table 1:Summary of channel model for I2O link
Pathloss and Penetration Loss [dB]
(d in m, fc in GHz)
Shadow fading
Applicability range, default values
Fast Fading
Indoor-indoor
InH as baseline:
PLLOS = 16.9log10(d) + 32.8 + 20log10(fc)
PLNLOS = 43.3log10(d) + 11.5 + 20log10(fc)
Reference for optional penetration loss:
k*d+ 18.3 n ((n+2)/(n+1)-0.46)
n is the number of floors, the value of k is FFS;
Log-normal distribution with σ=3dB(LOS)/4dB(NLOS)
3m&d&100 m
10m&d&150 m
InH (LOS/NLOS)
Outdoor-outdoor
ITU-R P.1411-6 with p=50:
PLLOS = 20 log10(d) + 32.45 + 20 log10(fc)
PLNLOS = 40log10(d) + 24.5 + 45log10(fc) +
Upper limit of LOS probability:
Log-Rayleigh distribution with s = 7dB
Log-normal distribution with s = 7dB
Lurban = 6.8 dB
ITU UMi (LOS/NLOS)
Indoor-outdoor
I2O pathloss
PL = PLb+ PLbw + PLin
PLb = PLb (dout+
PLtw = 14 + 15(1-cos(θ))2
PLin = 0.5din
Log-normal distribution withs = 7dB
3m&dout+din&1 000 m,
0m&din&25 m,
ITU-UMi (LOS/NLOS)
PLb &for hIN ≥ 7.5 m
For LOS: PLb=max(PLfree-space, PLb1)
PLb1 = 22.7log10(d) + 27.0 + 20log10(fc)
PLb1 = 40log10(d) + 7.56 – 17.3log10(hIN) –17.3log10(hOUT) + 2.7log10(fc)
fc:& 0.45-1.5
PLb1 = (44.9 - 6.55log10(hOUT))log10(d) + 5.83log10(hOUT) + 16.33 + 26.16log10(fc) – 0.8 hIN
fc: 1.5-2.0
PLb1 = (44.9 - 6.55log10(hOUT))log10(d) + 5.83log10(hOUT) + 14.78 + 34.97log10(fc) – 0.8 hIN
fc: 2.0-6.0
PLb1 = (44.9 - 6.55log10(hOUT))log10(d) + 5.83log10(hOUT) + 18.38 + 23log10(fc) – 0.8 hIN
3m& d & d’BP1)
d’BP&d&5000m
10m&d&2000 m
hIN =(n-1)*N+1.5 m, hOUT = 1.5 m
PLb &for hIN = 1.5 m
PLb = 20 log10(d) + 32.45 + 20 log10(fc)
PLb = 40log10(d) + 24.5 + 45log10(fc) +
Lurban = 6.8 dB
hIN=1.5m, hOUT=1.5 m
2)&&&&&&&R1-131922 IntelCorporation(noted)
l& 对于链路级分析,在研究D2D discovery和communication时,建议使用EPA-5Hz和ETU-30Hz模型
l& 使用下表中的信道模型参数来进行D2D系统级仿真
Table 1.Recommended UE-UE channel characteristics for D2D studies
UE-UE link
General description
Pathloss, shadow fading based on ITU-R P.] for urban area case.
Large scale parameters (except for shadowing standard deviation) and their cross-correlation values as for ITU-R UMi LOS and NLOS in Table B.1.2.2.1-4 of 3GPP TR 36.814 [6].
Small scale channel modeling (except those listed below) based on SCM model for ITU-R UMi LOS and NLOS [6].
Distance dependent path-loss
Distance d is given in m, frequency f in MHz
Shadowing standard deviation
LOS: , log-normal distribution
NLOS: , log-normal distribution
Shadowing correlation
As proposed in [3].
LOS Probability
Modified model exponentially decaying at large distances
Fast fading channel model
Modified ITU-R UMi channel model:
·&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values). AOD/AOA spread (log10(degrees)):
o&&& LOS:&&& μ = 1.75, σ = 0.19;
o&&& NLOS: μ = 1.84, σ = 0.15.
·&&&&&&&& Doppler Spread
o&&& Low mobility scenario, UE speed is 3km/h
UE-UE link
General description
Pathloss, shadow fading, based on WINNER+ O2Ia channel model [5].
Large scale parameters (except for shadowing standard deviation) and their cross-correlation values as for ITU-R UMi O2I in Table B.1.2.2.1-4 of 3GPP TR 36.814 [6].
Small scale channel modeling (except those listed below) based on SCM model for ITU-R UMi O2I in Table B.1.2.2.1-4 of 3GPP TR 36.814 [6].
Distance dependent path-loss
- effective BS and UE antenna heights accordingly
- BS and UE antenna heights accordingly
Distances are given in m, frequency f in GHz.
Shadowing standard deviation
LOS: , log-normal distribution
NLOS: , log-normal distribution
Shadowing correlation
As proposed in [3].
LOS Probability
Modified model exponentially decaying at large distances
Penetration Loss
Frequency f in GHz
Fast fading channel model
Modified ITU-R UMi O2I channel model:
·&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values). AOD/AOA spread (log10(degrees)):
o&&& O2I:&&&& μ = 1.76, σ = 0.16.
·&&&&&&&& Doppler Spread
o&&& Low mobility scenario, UE speed is 3km/h
UE-UE link
(same building)
General description
Pathloss, large scale parameters and their cross-correlation values as in [6] for ITU-R InH.
Small scale channel modeling based on SCM model for ITU-R InH [6].
Distance dependent path-loss
Distances are given in m, frequency f in GHz.
Shadowing standard deviation
LOS: , log-normal distribution
NLOS: , log-normal distribution
Shadowing correlation
As proposed in [3].
LOS Probability
Modified model exponentially decaying at large distances
Fast fading channel model
Modified ITU-R UMi InH channel model:
·&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values). AOD/AOA spread (log10(degrees)):
o&&& LOS:&&& &&& μ = 1.62, σ = 0.22.
o&&& NLOS:&&& μ = 1.77, σ = 0.16.
·&&&&&&&& Doppler Spread
Low mobility scenario, UE speed is 3km/h
UE-UE link
(different buildings)
General description
Pathloss, shadow fading, based on WINNER+ O2Ia channel model [5].
Pathloss equation has the following modifications:
-&&&&&&&&&& Penetration loss is added to reflect the signal propagation through the second wall
-&&&&&&&&&& Indoor distance for the second indoor propagation part is generated
Large scale parameters (except for shadowing standard deviation) and their cross-correlation values as in [6] for ITU-R UMi O2I.
Small scale channel modeling (except those listed below) based on SCM model for ITU-R UMi O2I [6].
Distance dependent path-loss
- total indoor distance
- effective BS and UE antenna heights accordingly
- BS and UE antenna heights accordingly
Distances are given in m, frequency f in GHz
Shadowing standard deviation
LOS: , log-normal distribution
NLOS: , log-normal distribution
Shadowing correlation
As proposed in [3].
LOS Probability
Modified model exponentially decaying at large distances
Penetration Loss
Frequency f in GHz
Fast fading channel model
Modified ITU-R UMi O2I channel model:
·&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values). AOD/AOA spread (log10(degrees)):
o&&& I2I:&&&&& μ = 1.76, σ = 0.16.
·&&&&&&&& Doppler Spread
Low mobility scenario, UE speed is 3km/h
l& 对于Macro-UE和RRH-UE链接,建议使用RAN1 WG中的信道模型,在表1和2中列出
Table 1.Proposal on large scale propagation characteristics for proximity studies inagreed D2D scenarios
According to Section 4.3 of ITU-R P.]
Shadow fading:
According to Section 4.3 of ITU-R P.] with the following modifications: for LOS case lognormal distribution is used
Probability of LOS:
According to Table 2 from the companion contribution [2]
Pathloss, Shadow fading:
According to scenario O2Ia from Table 4-1 of WINNER+ [5]
Probability of LOS:
According to Table 2 from the companion contribution [2]
(same building)
Pathloss, Shadow fading:
According to ITU-R InH (Table B.1.2.1-1 of 3GPP TR 36.814 [6])
Probability of LOS:
According to Table 2 from the companion contribution [2]. The formula is a modified equation for ITU-R InH scenario from Table B.1.2.1-2 of 3GPP TR 36.814 [6]
(different buildings)
Pathloss, Shadow fading:
According to scenario O2Ia from Table 4-1 of WINNER+ [5] with the following modifications (Table 5 of accompanied contribution [2]):
-&&&&&&&&&& Penetration loss is added to reflect the signal propagation through the second wall
-&&&&&&&&&& Indoor distance for the second indoor propagation part is generated
Probability of LOS:
According to Table 2 from the companion contribution [2]
Macro eNB-UE
Pathloss, Probability of LOS, Shadow fading:
According to 3GPP Macro + Indoor RRH/Hotzone scenario. See Table A.2.1.1.5-1 of 3GPP TR 36.814 [6])
Pathloss, Penetration Loss, Probability of LOS, Shadow fading:
According to 3GPP Macro + Indoor RRH/Hotzone scenario. See Table A.2.1.1.5-1 of 3GPP TR 36.814 [6])
Pathloss, Shadow fading:
According to scenario O2Ia from Table 4-1 of WINNER+ [5]
Probability of LOS:
According to Table 2 from &our companion contribution [2]
(same building)
Pathloss, Probability of LOS, Shadow fading:
According to ITU-R InH (Table B.1.2.1-1 of 3GPP TR 36.814 [6])
(different buildings)
Pathloss, Shadow fading:
According to scenario O2Ia from Table 4-1 of WINNER+ [5] with the following modifications (Table 5 of contribution [2]):
-&&&&&&&&&& Penetration loss is added to reflect the signal propagation through the second wall
-&&&&&&&&&& Indoor distance for the second indoor propagation part is generated
Table 2. Proposal on small scale channel models forsystem level proximity studies in agreed D2D scenarios.
According to SCM model parameters for ITU-R UMi LOS and NLOS from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6] with the following modifications:
-&&&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values)
According to SCM model parameters for ITU-R UMi O2I from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6] with the following modifications:
-&&&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values)
(same building)
According to SCM model parameters for ITU-R InH from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6] with the following modifications:
-&&&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values)
(different buildings)
According to SCM model parameters for ITU-R UMi O2I from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6] with the following modifications:
-&&&&&&&&&& Aligned AOD and AOA statistical distributions (mean and std. deviation values for AOD are set equal to the AOA values)
Macro eNB-UE
According to SCM model parameters for ITU-R UMa from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6] for LOS and NLOS accordingly
According to SCM model parameters for ITU-R UMa NLOS case from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6] for both LOS and NLOS cases
According to SCM model parameters for ITU-R UMi O2I from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6]
(same building)
According to SCM model parameters for ITU-R InH from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6]
(different buildings)
According to SCM model parameters for ITU-R UMi O2I case from Table B.1.2.2.1-4 of 3GPP TR 36.814 [6]
3)&&&&&&&R1-132622 AniteTelecoms Ltd., Elektrobit Corporation(noted)
l& 对于D2D O2O部分,建议使用ITU-R IMT-Advanced 3D模型
4)&&&&&&&R1-132501 QualcommIncorporated, US Department Of Commerce, General Dynamics Broadband UK(noted)
l& 对于O2O大尺度衰落,使用ITU-1411-6模型
l& 对于I2I,使用3GPP InH模型
l& 使用winner+O2I模型
l& 对于所以D2D场景,使用ITU-R UMi LOS
l& 使用简单的空间损耗模型
l& 使用36.184中的小尺度衰落,并有微小的修改
5)&&&&&&&R1-132030 Ericsson,ST-Ericsson(noted)
l& 对于不同的D2D communication场景,不同的信道模型总结如下:
Considered scenario
Pathloss model
Fast fading
Same floor
,&&&&& dB/m
Same building,
, &dB , &dB
InH (NLOS)
Different buildings
Berg’s recursive model (first and last hop by expression above)
dB ,&& &dB/m ,
One device outdoors and one device indoors
Berg’s recursive model (Outdoor to indoor hop by expression above for exterior walls
dB ,&& &dB/m
Both devices outdoors
Berg’s recursive model (Section 4)
6)&&&&&&&R1-132341 NEC Group(noted)
l& 建议使用以下信道模型
1: Proposed models for D2D channel
Indoor to Indoor
Outdoor to Outdoor
Indoor to Outdoor/ Outdoor to Indoor
Dual-strip model [4] or the proposed model in the following equation
Dual-strip model [4]
Log-normally distributed with standard deviation 4dB (NLOS)
Log-normally distributed with standard deviation 10dB
Log-normally distributed with standard deviation 8dB
Shadow fading correlations
Fast fading
TGn channel models [6]
3GPP Interim channel model [7]
l& 在RAN1中应该深入研究通信双方都移动的新型多普勒效应
l& D2D链路级仿真的多普勒功率谱使用以下公式:
l& D2D系统级仿真时空间信道模型(spatial channel model)使用以下公式:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
7)&&&&&&&R1-132247 LGElectronics(noted)
l& 对于I2I,建议使用InM模型(TR36.814)
l& 对于O2O,建议使用ITU-R P1411-6 model (p=50)
l& 对于I2O,建议使用Winner II -A2模型
l& 对于700MHz载波,-9dB offset,使用TR 36.814和TR 36.828提出的eNB-to-UE信道模型
8)&&&&&&&R1-132316 Nokia, NokiaSiemens Networks(noted)
l& 当选择信道模型时,应该考虑spatial consistency。路损和相近链路的相关性是D2D信道模型的重要特点
l& 对于O2I路损,建议使用TR36.828室外UE-HeNB
l& 对于I2I路损,建议使用TR36.828室内UE-HeNB
l& 对于O2O路损,建议使用ITU-R P.1411-6 (Section 4.3) 中提出的low height model, p = 50 and Lurban=-8dB
l& 建议增加对数正态阴影,O2O使用7dB,O2I和I2I使用4dB
l& 如果RAN1同一对相关性建模,建议使用简单模型,与蜂窝场景下相同,在链路末端取和, ,SFUEi是从相同2D map取得
l& RAN1应该继续研究多普勒效应,D2D discovery和communication性能的初步评估可能不需要对快衰落建模
9)&&&&&&&R1-132502 Qualcomm, USDepartment of Commerce, General Dynamics Broadband UK, ITRI, Fujitsu, Intel,Samsung, ZTE, III(noted)
l& 对于三种情况的建模
10)&&&& R1-132760Qualcomm, Huawei, HiSilicon, ITRI, ZTE, CATT, Samsung, US Department ofCommerce, General Dynamics Broadband, III(noted)
l& 对于三种情况的建模
11)&&&& R1-132621Anite Telecoms Ltd., Elektrobit Corporation(noted)
l& 讨论了P.1411-6对于D2D仿真的适用性,建议使用IMT-Advance而不是P.1411-6
12)&&&& R1-132761Qualcomm, ANITE, Intel, Fujitsu, US Department of Commerce, General DynamicsBroadband, III(noted)
l& D2D多普勒建模:修改ITU-R UMi/InH模型使其适用于双向移动
13)&&&& R1-132745NEC, Ericsson, ST-Ericsson, Huawei, HiSilicon(noted)
l& 讨论双向移动对链路级和系统级性能的影响
l& 讨论在发射机和接收机的散射对链路级和系统级性能的影响
l& 如果需要,修改链路级仿真的多普勒频谱,至少在UE移动超过3km/h时考虑上双向移动
l& 如果需要,因为天线高度较低,修改现在的3GPP SCM或者定义新的SCM
14)&&&& R1-132762Qualcomm, Intel, US Department of Commerce, General Dynamics Broadband, III(noted)
l& From R1-132390, Intel
l& dcorr = 10m
l& dTh1 = 1m
l& dTh2 = 13.5m
15)&&&& R1-132803Qualcomm, Anite, RIM, Intel, III, General Dynamics Broadband(noted)
l& 该提案是R1-132761的完善,增加了以下两条:
n& Direction of Travel(velocity vector) independent and random
n& Doppler is determinedby path AOA/OA
D2D Discovery
1)&&&&&&&R1-132371 NTT DOCOMO(noted)
l& D2D发射和接收使用相同的频带
l& D2D UE不能使用全双工方式
l& 研究在/不在网络覆盖场景的同步问题
2)&&&&&&&R1-132028 Ericsson,ST-Ericsson(noted)
l& D2D复用上行资源(FDD 上行频谱,TDD 上行子帧)
l& 考虑引进新的数据和控制信道/信号
l& 分配上行子帧资源子集的一个子集给D2D
l& 用户只能在分配的资源中传输D2D信号
l& D2D复用上行蜂窝TA
l& 为了满足各种场景的需求,需支持异步discovery
l& 用户能解码异步信标
l& 至少在public safety场景下,connection-less通信应作为D2D communication的一个候选方案
3)&&&&&&&R1-132413 Huawei,HiSilicon(noted)
l& RAN1应研究现有的上行信号是否适合基站定向发现(eNB-directed discovery)
l& RAN1应研究对discovery信号如何最恰当的选择时域/频域资源
l& RAN1应研究如何最优化复用discovery资源,网络采用什么机制可以最好的评估和控制复用
4)&&&&&&&R1-132503 QualcommIncorporated(noted)
l& Discovery使用所有的PUSCH
l& Discovery信号使用PUSCH的调制和编码
l& 对于Open ProSe and Restricted ProSediscovery使用相同的物理层传输方案
l& Discovery资源的选择可以由UE或者网络完成
l& Discovery子帧应使用下行链路timing
l& Discovery资源的跳频需要降低远近效应和半双工问题的影响
l& 使discovery子帧与少数上行链路子帧交织
5)&&&&&&&R1-132726 QualcommInc., General Dynamics Broadband UK, US Dept.of Commerce, Fujitsu, Intel, III(noted)
l& 对于FDD部署时,discovery需要使用上行链路频谱
l& Discovery的设计应包括RRC_IDLE UEs
l& Direct discovery设计应使预留资源以半静态方式周期性的分配
6)&&&&&&&R1-132772 QualcommInc., Huawei, HiSilicon, LG Electronics, LG Uplus, Intel, Samsung, NEC, RIM,ETRI(noted)(三种discovery方式,重要)
l& Type 1: a discoveryprocedure where resources for discovery signal transmission are allocated on anon UE specific basis
Note: Resources can befor all UEs or group of UEs
l& Type 2: a discoveryprocedure where resources for discovery signal transmission are allocated on aper UE specific basis
n& Type 2A: Resources areallocated for each specific transmission instance of discovery signals
n& Type 2B: Resources arepersistently allocated for discovery signal transmission
D2D Communication
1)&&&&&&&R1-133908 QualcommInc., US Department of Commerce, Ericsson, ST-Ericsson, Genera

我要回帖

更多关于 standard是什么意思 的文章

 

随机推荐