微纳金属3d打印设备技术应用:AFM探针?

随着科技发展及推广应用的需求,利用快速成型制造金属功能零件成为快速成型主要的发展方向。本文让我们来看看3D打印金属零件的所有技术,以及你该选择用那种技术打印金属零件。目前,市面上大约有10种方法可以3D打印金属零件。这些方法根据所使用的原材料形态以及能量源进行粗略的划分,比如材料是金属丝、金属粉末还是金属线材。有些甚至还使用金属树脂、金属棒和金属颗粒作为原材料,每种方法都能制造出具有不同属性的部件。选择使用哪种金属技术需要考虑零件细节、形状、尺寸、强度、金属类型、成本、打印速度和数量等方面的因素。如果从这些方面进行分析,每项技术都有优点和缺点,不幸的是,没有一种方法能快速、廉价、完美地3D打印出超强的零件,所以要根据应用需求来选择到底使用哪种技术。3D打印金属的10种最佳方法技术类型成型尺寸成本最小层高零件性能打印速度FDM/Extrusion
熔融挤出成型(线材)小到中$0.05 mm中到高最高500 mm/sSLM/PBF
选择性激光熔融或激光粉末床小到中$$$0.02 mm高最高25 cm3/hEBM/PBF
电子束熔融或者电子束粉末床小到中$$$$0.07 mm高55 – 80 cm3/hMetal Binder
Jetting
金属粘结剂喷射小到中$$$0.035 mm高1,500 cm3/hWAAM
电弧送丝大到非常大$$1 mm高2.2 kg/hDED Laser
激光直接能量沉积中到大$$$$0.2 mm高500 cm3/hDED eBeam
电子束直接能量沉积中到大$$$0.2 mm高2,000 cm3/hMetal
Lithography
金属立体光刻很小到中$$$$0.01 mm高最高300层/小时Cold Spray
冷喷涂中到大$$0.38 mm高100 g/mMicro 3D
Printing
微纳3D打印很小$$$$0.005 mm高–10种金属3D打印技术简介1. FDM与挤出成型△在FDM 3D打印机上使用巴斯夫Forward AM的不锈钢长丝3D打印的金属零件(来源:Ultimaker、IGO3D)有几种3D打印技术属于挤出技术。一种是我们熟悉的熔融沉积成型(FDM),它使用由塑料基底制成的长丝,其中均匀地注入了金属颗粒。打印金属部件的金属长丝必须含有高比例的金属粉末(约80%),并需要经过脱脂、烧结等后处理,以去除塑料成分得到金属部件。市场上的一些桌面FDM 3D打印机可以用金属丝打印,这些金属丝有不锈钢(316L,17-4 PH)、铜和钛。另一项技术使用的是具有更高浓度的金属长丝。以至于它实际上是一根坚固的金属棒,但仍然可以被加热和挤出。这些材料通常是某一特定3D打印机所独有的,如Markforged或Desktop Metal,其成本比普通FDM高,但比其他金属3D打印方法低。第三种金属挤出方法(在工业领域有更多)是使用金属颗粒进行挤出,金属颗粒可以是与注射成型相同的材料,因此材料体系较为丰富且全面,性价比很高,当然也可以是特别制作的颗粒。如国内升华三维,其可基于注射成型的材料进行二次开发及适配,极大提高了材料的灵活性、优化材料性能,进而使烧结制品致密性提高,强度增加、韧性加强,延展性、导电导热性得到改善、磁性能提高。△基于金属粉末挤出工艺3D打印出金属零件(来源:升华三维)2. 使用激光的金属粉末床熔融——选择性激光熔化(SLM)△金属打印机制造商SLM Solutions的粉末床熔融设备,使用激光来融化金属粉末(来源:SLM Solutions)使用高功率激光器选择性地熔化金属粉末的3D打印机,这种技术的设备占了金属3D打印机的大多数,通常被称为选择性激光熔化(SLM)或粉末床熔化(PBF)。打印机可以使用 "纯 "金属材料,也可以使用合金材料。SLM 3D打印机使用粉末状金属原材料,在投入打印仓之后,由刮刀或滚筒将金属粉末平铺在基板或构建平台上形成一个薄层。接下来,一个高功率的激光器按照切片的图案来选择性地熔化粉末材料。然后,构建板下降到一个小层的高度,涂布机在表面上铺上另一层新的粉末。打印机不断重复这些步骤,直到得到成品部件。与EBM技术相比,SLM技术可以打印出更好的初始表面光洁度和更高的精度。3. 用电子束进行金属粉末床融合——电子束熔融(EBM)△使用电子束的粉末床熔融技术因打印速度快和高产量而受到推崇,这些外科植入物是使用GE Additive公司的Arcam 3D打印机打印的(来源:GE Additive公司)电子束熔化是一种使用电子束作为能量来源的3D打印技术,主要用于导电金属。所有EBM 3D打印机都由一个能够发射电子束的能量源、一个粉末容器、一个送粉器、一个粉末再涂层器和一个加热的构建平台组成。需要注意的是,打印过程必须在真空中进行。这是因为电子束的电子会与气体分子发生碰撞,这将 "杀死 "电子束。由于电子束能量较高,EBM可以比SLM更快,产品部件的残余应力也比SLM低。4. 金属粘结剂喷射△使用3D打印机制造商ExOne(被Desktop Metal收购)的金属粘结剂喷射技术制造的金属零件(来源:ExOne)金属粘结剂喷射可以打印出具有复杂设计的零件,而不是实心的,由此产生的零件在具有同样强度的同时,也大大减轻了重量。粘结剂喷射的多孔性特征也可用于实现医疗应用中更轻的终端零件,如植入物。与其他增材制造工艺一样,粘结剂喷射可以生产具有内部通道和结构的复杂部件,消除了焊接的需要,减少了部件的数量和重量。为粘结剂喷射重新设计你的金属部件,可以大大减少使用和浪费的材料。总的来说,金属粘结剂喷射零件的材料特性与用金属注射成型生产的金属零件相当,后者是大规模生产金属零件的最广泛使用的制造方法之一。另外,粘结剂喷射部件表现出更高的表面光滑度,特别是在内部通道。5. 电弧送丝增材制造(WAAM)△来自MX3D的WAAM钢件(来源:MX3D)电弧送丝增材制造以金属线为材料,以电弧为能量来源,与焊接非常相似。电弧熔化金属丝,然后被机械臂一层一层地沉积到一个成型平台上。与焊接一样,惰性气体被用来防止氧化并改善或控制金属的特性。这个过程逐渐将材料制造成一个完整的三维物体或修复现有物体。没有支撑结构需要移除,如果有必要,成品部件可以通过数控加工达到严格的公差,或者进行表面抛光。通常情况下,打印出来的部件需要热处理,以释放残余应力。6. 基于激光的定向能量沉积(DED)△使用激光定向能沉积技术在DMG Mori的机器上3D打印金属零件(来源:DMG Mori)使用激光定向能量沉积技术来熔化金属材料,同时由喷嘴沉积。金属材料可以是粉末或金属丝形式。尽管用DED技术能够建造完整的零件,但这种技术通常被用来修复或增加现有物体的材料。当与数控加工相结合时,它可以产生一个精确的成品部件。DED系统可能不同于PBF系统,因为使用的粉末通常尺寸较大,需要更高的能量密度。与PBF系统相比,拥有更快的构建速率。然而,带来了较差的表面质量,可能需要额外的加工。通常用于PBF系统的支撑结构很少或从未用于DED,DED通常使用多轴转台来旋转构建平台以实现不同的特征。在不需要粉末床的情况下,DED系统可以在现有零件上进行维修或打印。7. 基于电子束定向能量沉积(DED)△xBeam DED打印机电子束熔化金属线3D打印的零件,这些打印出来的零件有一半经过CNC加工,以达到最终的零件质量要求(来源:xBeam)电子束定向能量沉积使用电子束熔化金属线(而不是粉末),同时由喷嘴沉积。与上述WAAM非常相似,电子束DED因速度而受到推崇。与WAAM不同,这些打印机需要一个真空室。通常情况下,零件被打印成接近净值的形状,然后用数控机床加工成严格的公差,如上面的照片所示。8. 金属立体光刻技术△用混合了金属的树脂材料制作的金属打印件通常出现在微型3D打印中(来源:Incus)金属光刻技术,也称为基于光刻技术的金属制造(LMM),使用光敏树脂和金属粉末的混合物浆料作为原料。这种对光敏感的浆料在光的作用下被逐层选择性地聚合起来。金属立体光刻拥有出色的表面质量,大多用于(但不限于)微型3D打印,因此它具有极高的细节。9. 冷喷涂△来源:Impact Innovations冷喷是一种制造技术,它以超音速喷射金属粉末,在不熔化的情况下将其粘合,这几乎不产生热应力。自21世纪初以来,它被用作一种涂层工艺,但最近几家公司已将冷喷技术用于增材制造,因为它能以比典型的金属3D打印机高约50至100倍的速度将金属层精确到几厘米。在增材制造方面,冷喷正在被用于快速制造金属替代部件,以及金属部件的现场维修和修复,如石油和天然气行业的军事设备和机械。修复后的零件,在某些情况下,可以比新的更好。10. 微纳金属3D打印△来自3D MicroPrint的微纳金属3D打印(来源:3D MicroPrint)有两种方法可以制造微型金属3D打印部件:上面提到的金属立体光刻技术和微纳选择性激光烧结(μSLS),这是一种小规模的激光粉末床熔融技术,上面也提到过。也被称为微型激光烧结或微型激光熔化,这种工业技术使用一个粉末床和一个精细激光。
  3D 打印技术又被称为“快速成型技术”,是一种以计算机图形文件为基础,对材料逐层累加堆积成型的三维构型加工方式。其中的3D微纳米打印在复杂三维微纳结构和高深宽比微纳结构制造方面具有很大的潜能和突出优势,而且还具有设备简单、效率高、用材广泛、直接成型等优点。  本文将重点讲述微立体光刻(MSLA)、微激光烧结(MSLS)、熔融沉积造型(FDM)、片材层压(LOM)、双光子聚合(TPP)、直写成型技术(DIW)的基本结构原理和国内外应用现状,对不同3D微纳米打印技术进行对比分析。  1、微立体光刻  微立体光刻 (MSLA) 是基于快速成型中光固化成型技术的改进,率先由Ikuta和Hirowatari 在制作微固化聚合物的过程中引进。由于微立体光刻有着亚微米级的三轴移动精度,微米级的激光喷头,所以能够打印层厚只有1~10 μm的微型结构。  根据成型方式的不同,微光刻主要分为扫描立体光刻和投影立体光刻。扫描立体光刻提出时间较早,主要是发散激光光斑逐层以点对点和面对面的方式固化光敏树脂,但是打印效率低,成本高,尤其是在激光束的对焦上会产生偏差。  例如 Xu 等设计的一种激光光斑直径只有12.89 μm的扫描光刻系统,一次固化成型的最小层厚是20 μm。在扫描立体光刻的基础上,研究人员又开发出了投影立体光刻技术,使激光通过动态掩模上的图形后能够一次性曝光固化树脂,大大提高了成型效率。  美国北卡罗来纳大学研究人员在《Science》上介绍了全新的 CLIP 技术,该技术在固化中充分利用了氧气阻碍聚合物的特点,更大幅度地提高了3D 成型速率,其速度是传统SLA的25倍。  图1 投影微立体光刻成型示意图  2、微激光烧结  微激光烧结(MSLS)是使用高温激光或者电子束有选择性地熔化金属粉末并最后黏结成微尺度金属制品的一种快速成型方式。由于激光聚焦直径有限,普通 SLS系统还不能制造尺寸小于500 μm的微构件,因此想要获得高精度的微结构金属制品则需要更精密的结构和更细的金属颗粒。  Streek等通过直接炉内烧结碳化硅粉末获得了6 mm 外径的微型齿轮,强度达到了航天工业级的要求,但是表面质量不高。而德国米特维达科技大学联合激光研究所共同推出一款可以制造高精度陶瓷和金属微结构的MLS系统,最大分辨率为30 μm,最小表面粗糙度为1.5 μm,大大提高了金属烧结制品的分辨率和表面粗糙度。  2013年,德国 EOS 公司与3D-Micromac公司开展新型激光烧结金属3D打印机的研发合作,标志着微激光烧结商业化的开端。  3、熔融沉积造型  熔融沉积造型 (FDM)是一种通过计算机控制喷头移动和挤出来制作三维构件的快速成型方式。由于喷头结构和运动精度的限制,FDM成型的实物还难以达到微米级的高精度水平,但通过对设备改进和研究,打印成品的精度也逐步提升,一些工业级 Solidscape系统打印的最小层厚已在10 μm以下。  Zein 等利用 FDM 技术制作了 PCL 生物多孔支架,支架的通道尺寸是160~700 μm,线径为260~370 μm,并呈现出了良好的拉伸和压缩力学性能。  Vozzi 等通过改进喷头结构,设计了一种压力辅助微量注射(PAM)的方法,无需对材料加热熔融,直接使用气压驱动的微型注射器在基板上挤出生物材料支架,最终成型的尺寸控制在 10~200 μm,分辨率达到了10 μm。  图2 熔融沉积造型示意图  4、片材层压  片材层压(LOM)技术主要是逐层铺设成张的纸或者金属片材,随后经激光切割后以黏结剂或者焊接的方式结合在一起。在这成型过程中使用焊接金属的工艺被称为超声波增材制造(UAM) ,而使用纸张的工艺被称为分层实体制造(LOM) 。  由于片材层压所能达到的精度远远小于其他 3D 成型方式,所以一般很少将其用于微部件的 3D 打印,但在一些带有内腔结构的金属或者陶瓷常采用此方法。  目前已经开发出计算机辅助制造片材层压材料的综合系统,专用于微小结构的成型。经激光切割完一层金属片或者陶瓷片形成规则图案后,迅速与之前的片层黏结,最后逐层堆积形成所需的形状图案。  此外,该技术一次可以同时成型5种材料,其中一种或两种充当支撑材料,层厚变化范围在30~1300 μm。  5、双光子聚合  双光子聚合(TPP)是一种利用超强激光脉冲光源使光感材料、可聚合材料、液体材料交合,并在激光束聚焦区域硬化的成型工艺。相比于采用紫外激光单光子聚合的MSLA技术,双光子聚合采用了红外飞秒脉冲激光作为光源,突破了光学衍射的限制,能够制造分辨率高的纳米尺度任三维结构。  双光子吸收的发生主要在脉冲激光的焦点处,当焦点直径只有几百微米时,聚合成型物的直径可以降到100 nm 以下,获得几十纳米的高精度尺寸。典型的双光子聚合 3D 打印系统是以飞秒激光源发射激光电源,先后经过快门后衰减器调节曝光时间和光强,最后经物镜聚焦后照射到树脂表面,在三维移动控制下按预定模型的路径进行扫描成型。  Maruo 等首次在光敏树脂中利用双光子聚合打印出了微米级的三维微结构,而最近维也纳理工大学则将这一技术推向更高的水平,仅仅用时4 min 制造出一个285 μm的微型 F1 方程式赛车,打印速率达到了5 m/s,远远超出了之前的数毫米每秒的速率。  图3 双光子聚合成型示意图  6、直写成型  直写成型(DIW) 跟熔融沉积原理类似,通过控制喷头内悬浮液的流出以及喷头的移动可以制备出各种不同形状的三维结构图案。  根据流体挤出形式的不同,直写成型技术主要分为连续成型和液滴成型两种方式。其中液滴成型是通过控制静电场使带点液滴偏转而逐步堆积成型,连续成型则是控制液体流动堆积成型。直写成型可用材料范围广泛,功能性强,打印精度较高,因而受到了高度重视。  Wang 等通过控制低熔点金属液滴的下落来实现对微液滴3D 打印的快速调控,液滴直径控制在300 μm 以下,加快了复杂金属构件的成型速度。Landers 等用连续成型技术成功打印出了温敏性水凝胶支架,实现了生物支架的柔性化。Jennifer 等通过对常规打印喷头的改进,在硅胶上打印出数十微米宽的炭黑电阻,从而制作了带有特定功能的柔性人体传感器。  表1 3D 微纳米打印技术比较  7、总结与展望  3D 打印发展至今,在技术上已经取得不少的突破和进展,尤其是近些年多方面因素的推动,使得这项技术能够得到大面积推广和普及。  微立体光刻、微激光烧结、双光子聚合这三种技术代表着未来3D 微纳米打印的发展趋势,可以为一些新材料、超材料的结构制造提供新的方法,扩大功能性材料的运用和发展; 而熔融沉积、直写成型、片材层压也将在之前基础上得到功能性的补充,获得更高的成型精度。  但是当前3D 微纳米打印还存在着一些问题需要进一步的探索和研究:  1) 成本较高,效率低。尤其是一些生物打印机的单台售价就在10万以上,工业级的激光烧结和熔融沉积机型也在几十万左右。尽管精度和成型质量较高,但是单件制作时间较长,还达不到批量化生产的水平。  2) 材料依赖性高。尽管可供打印的材料范围很广,但是特定机型对应的材料却很有限,可供打印的功能性材料还有待开发。  3) 复合材料的微纳米打印。现有的能够同时实现微纳米尺度和多种复合材料 结构的打印装置很少,而且打印的材料数量很有限,一般都是在5种以下,这也是值得去研究的重要方向。阅读(0)举报欢迎举报抄袭、转载、暴力色情及含有欺诈和虚假信息的不良文章。");
}

我要回帖

更多关于 金属3d打印设备 的文章

 

随机推荐