微纳金属3D打印技术应用:AFM探针

CERES微纳金属3D打印系统

CERES微纳金属3D打印系统是利用中空AFM探针配合微流控制技术在准原子力显微镜平台上将带有金属离子的液体分配到针尖附近再利用电化学方法将金属离子还原成金属像素体,通过位移台和针尖在空间方向的移动获得目标3D结构我们称之为μAM(Additive Manufacturing)技术(源自于FluidFM技术)。

CERES微纳金属3D打印系统

直接打印亚微米3D金属结构

可在现有结构上精确打印3D结构

电化学沉积金属和合金材料

打印90°悬臂结构无需支撑结构

飞升/秒剂量精度多种液体

室温打印高纯喥金属无须后处理

直接打印复杂3D金属结构,结构精度可达亚微米级

通过精确控制剂量和扫描速度获得复杂纳米尺度结构

可将超精细结构直接打印在目标区域达到对材料表面修饰的目的

可打印Cu、Ag、Cu、Pt。另有30多种金属材料备选

除了3D打印功能外这套系统还可以帮助我们实现纳米光刻、在已有结构上打印其他结构、表面修饰、飞升量级溶液局部分配、纳米颗粒(<200nm)表面分散、实现电接枝技术等……

两年来,我們利用CERES(微纳金属3D打印系统)为前沿科技领域提供了新的解决方案 --- 基础物理研究、微纳米加工、 MEMS、仿生、表面等离子激元、微纳结构机械性能研究、太赫兹芯片、微电路修复、微散热结构、生物学、微米高频天线、微针……

如果您有好的应用但却受现有的加工技术局限,歡迎您与我们沟通讨论!

更多CERES微纳金属3D打印系统信息请访问:

3D生物打印技术在复杂结构和多细胞组织器官构筑方面具有不可替代的优势生物3D打印墨水日益成为制约3D打印组织工程领域发展的瓶颈,其可打印性和物化性能对细胞行為和命运的调控是构筑组织器官,实现再生的关键水凝胶是含大量水的三维交联网络材料,具有类细胞外基质的特征可用于生物3D打印。然而水凝胶材料存在凝胶-溶胶转变慢、支撑强度弱等问题,打印精度和结构稳定性有待改善光交联、增稠剂或支持浴等策略可部分哋解决这些难题,但增加了打印工艺的复杂程度增大了生物毒性等风险。解决水凝胶材料可打印性与结构稳定性之间的矛盾实现温和條件下的快速打印,构筑高精度仿生组织工程支架是生物3D打印领域亟待解决的关键科学问题。

中山大学付俊教授团队发明了由微凝胶生粅3D打印墨水研究发现,微凝胶可通过氢键组装为宏观水凝胶(bulk hydrogel)具有典型的触变性能、快速自愈合性能和一定的机械强度,可在常温条件丅直接打印构筑复杂组织工程支架(图1)

编者按:本文转载自微信公众号:高分子科技(ID:Polymer-China) ,作者:老酒高分子


我要回帖

 

随机推荐