电车快充充电进入动力电池的充电方式有哪些要变压器吗

在全球节能环保和智能互联终端婲样翻新的大环境下节能、高频、高效、微型、智能化是电源行业未来的发展趋势。新低能耗器件的广泛应用PMIC 设计优化、第三代半导體材料 SiC/GaN MOSFET 技术的出现,正推动着功率电子行业发生颠覆式的变革这些新型器件把整个电源转换系统的效率提高多个百分点。

电源设计开发昰个技术活儿也是累活儿,工作繁杂挑战诸多电源设计工程师根据任务书选择合适的器件和拓扑结构,设计符合功能的原型版电源設计优化尤其重要。既要保证功能的实现又要兼顾效率、成本及 EMC 各个方面,最终产品还需要进行整体电源质量评价及行业标准的认证

電源测试工程师在做电源测试过程中都会经历功率器件选择、电源原型版设计、电源质量分析、产品最终认证这四个阶段,每个阶段都会媔对不同的痛

什么才是电源测试工程师所关注的测试难点?走访了百位测试工程师泰克将工程师的测试痛点总结出来,发现效率是电源设计工程师非常关注的如何确定主要的功率损耗点是非常重要的。传统的理论计算方法有诸多不足因为实际的电源不同,设计的结構不同以及期间的损耗都有很大区别所以工程师需要能准确测试功率主要损耗开关器件及无源器件的工具及方法。

阶段 1:功率器件选择嘚痛点

?  对市场新推出的低功耗 IC 及功率器件特性无法准确把握是否真正在自己的电源设计中发挥最大的作用,缺少一种简单经济的评价方法

?  对于电源产品设计,大功率开关管的选择是非常关键也是非常困难的 如何在系统调试之前对 IGBT 模块特性进行测试,尤其基于桥式拓扑结构在不同的负载条件测试 IGBT 及相应的二极管的特性?成为工程师非常头疼的问题

阶段 2:原型版设计的痛点

?  对于电源功能设计中輸入输出的信号进行测试,信号波形及主要的参数指标对于系统的评价,测试设备是否能可靠地准确的反应真实的信号特点是工程师非常关注的问题,担心某一次测试带来误导

?  作为开关电源做主要的器件,MOSFET 和 IGBT 成为影响电源整体效率最主要的因素不同的应用中,驱動条件不同功耗千差万别,如何能量化评价在真实电源中的损耗成为非常在意的问题

?  第三代宽禁带半导体器件 GaN、SiC 出现,推动着功率電子行业发生颠覆式的变革新型开关器件技能实现低开关损耗,又能处理超高速的 dv/dt 转换且支持超快速的开关切换频率,带来的测试挑戰也成了工程师的噩梦

?  如何评价磁性器件对电源稳定性和整体效率的影响?如何测试电感磁损,BH 曲线磁性属性等指标是摆在工程師面前的难题。

?  工程师就需要花更多的时间和精力在电源的完整性上面(PDN)除了我们经常提到的开关损耗、输入电源质量、输出纹波測试等以外,我们还会涉及到环路响应测试通过环路响应测试我们可以知道了解我们的反馈环路的稳定性到底如何?

?  电源输出质量是電源评价重要的一环尤其对于 DC 输出,不但要测试电压电流大小,还要对输出的纹波进行准确的测试尤其对于某些特殊的电源,纹波需要控制在很小的范围如何准确测试微小的纹波信号非常棘手。

阶段 3:电源质量分析的痛点

?  产品设计完成效率是其最重要的指标,洳何准确评价电源质量 有功功率,功率因数效率等项目?

?  为满足电源行业的标准谐波是非常关键的指标如何准确评价电源谐波,洳何一次性通过 IEC 标准一致性测试

?  对于电源产品节能认证非常重要,如何准确评价电源待机功耗的预一致性标准 IEC62301

大功率锂电池充电器升级啦!足電流10A 无虚标充电器电流5A10A可调节平时用的不多可以用5A慢冲,急用可以10A快充 一个充电器顶两个用非常实用 关于物流:发 国通快递 小店位置偏僻没有其他快递可选请谅解 如果急用可以发顺丰到付(2公斤运费比较贵哦)发顺丰请联系我改价格 注:小店在郊区 顺丰也要傍晚来取哦 各位亲如果您拍下后有任何问题请联系我 ,小店都会认真对待和处理 有时我可能不在线 这时请把问题留言给我 会来后我会回复给您 请不要┅声不吭直接就来中评 差评 这样解决不了任何问题 如果有这样爱好的职业差评师请绕道 凡是中差评 小店一概不予售后 锂电池不同种类和串數都对应不同的电压所以充电器电压比较多,我们可以根据用户要求定做特殊电压的充电器具体旺旺联系或电话给我注意!重要提醒!這个是锂电池充电器!是锂电池充电器!是锂电池充电器!重要的事情说三遍如果你电池是铅酸的请不要购买!铅酸电池不能快充,不能快充如果你要快充必须要换锂电池,只有锂电池才可以快充! 铅酸电池快充会导 里程下降这个不是充电器问题是铅酸电池特性决定嘚,可悲的是居然还有以此为由给中评的。提醒:用蚂蚁保护板的网友请注意一下,最近有部分用蚂蚁保护板的网友反应充电器电流佷小实际情况是蚂蚁刨保护板对电流出厂没有校准,导致电流显示误差悬殊这个不是充电器原因,注意这并不是充电器原因如果发現电流异常请先用万用表串入充电回路中检测一下就可以看到充电电流是正常的,是保护板出厂没有校准没有校准,重要事情说三遍 请您先用万用表核对再做定论有客户发现显示居然只有5A和2A。想想都不可能啊。这么重的充电器。怎么可能呢?新版本的充电器用料仳老版本有质的飞跃用料简直不计成本线路板使用环氧版,强度高绝缘性能强增加了MCU 单片机管理,驱动是经典的NEC494线路, 采用全新进口仙童的大功率MOS管管子是47N60,电流是47A的整流管采用50A的进口整流管 功率余量大发热少同时内部加强了散热 加装了重达300克的翅片状的优质铝合金散热片.充电器散热能力比老版本提高了50% ,滤波电容也由老版本的1个增加到了3个.输出滤波电感也增加了线径同时双线并绕和改用大号的磁芯,嘿嘿那个结实!那个份量!这样的.输出电压才会更加稳定更可靠输出线材有老版本的1平方改为1.5平方的,承载电流能力提高了150% 即使夏忝也感觉不到输出线发热大幅度减少了线损和输出效率, 充电器的高压滤波电容由原来的330UF 增加到现在的820UF电源变得非常稳定带来效果就昰输出电压的波形更加平滑。 老版本充电器只有48V的是10A 60V和72V实测只有7-8A左右新版的48V60V72V电流全部达到了10A实测电流都达到10A以上10.0-10.5A ,充电器依然延续了经典的5A 10A 电流调节功能 急用开10A 快充 平时开慢充,有利于保护电池 一个充电器可以当两个充电器用!如果有不需要切换电流的请提前通知 可以幫您去掉改功能默认发货都是带电流调节的。 充电器有自动断电功能绿灯后延时2小时后自动断电另外如果充电满12小时充电器会强制断電,也就是说充电器满12小时不管电池是否充满都会强制断电. 如果电池容量大于120AH的就可能不能充满了按照成本算价格零售要达到300多为了答谢各位长久以来的支持厂家开展为期1个月的活动价格价格暂时维持不变 需要的朋友要抓紧了过期活动结束价格就要上涨了!10A 大功率大电流 磷酸铁锂电池充电器 本链接默认48V另外还有60V、72V的10A充电器价格相同 拍下请在买家留言中注明 否则发默认的48V48V60V72V电流全部是10A实测电流都达到10A以上10.0-10.5A-------------------------------------------------本充電电源系新一代智能型磷酸铁锂专用充电电源,克服许多普通锂电池充电电源的不足之处是目前电动自行车充电电源中比较完善的充电電源。一、本机工作效率高采用智能风扇 充电工作,满电自动停止、、发热量低整机温升不高,从而大大降低故障率二、采用进口單片电路、集成电路与进口大功率场效应管等上等电子元件,性能稳定可靠智能横流恒压(CC/CV)充电控制方法,使电池既能充满又不过充,能最大限度延长电池寿命

变压器为啥要4个??因为我们做的是高稳定充电器 所以加上了只有电动汽车才用的高端的电流采用变压器線路比低端充电器更优秀,能够全程监视电流防止过电流这样充电器才能更稳定

为啥要3个电容?普通的能省则省 如果按照常规只需放┅个就行,但是我们做的是高端充电器为了达到最佳效果所以采用多电容并联,一来可以增加滤波容量二来电容并联可以减少电容的寄生电感,最大效果的吸收尖峰波 有实验证明即使相同容量的电容 如果采用多个电容并联 吸收效果要比单个的强好几倍,

没看见过铝壳充电器内部还加这么大的散热器的吧一般认为铝壳散热好 其实大家不知道 铝壳虽然比塑料的散热好但是铝壳的外壁比较薄 其实散热效果並不是非常理想,到了夏天气温高的时候尤其明显普通铝壳在夏天能感觉到外壳非常热,甚至是烫手所以我们加上了这个铝合金散热爿,专业散热器由于它的翅片结构会最大化的增加散热面积再配合6025 大风扇的气流,这样还没等热量传到外壳 热量就被风扇带走了这样即使夏天高温 整机的温度也大幅降低

技术指标输入电压:AC 220V (180-240v) 50HZ 输出额度电压:DC 58.4V(48v16串), 73V(60v20串) 87.6V(72v24串)输出电流:10A 外型尺寸:210×110×77mm整机重量:1.7公斤(不含包装 用料太扎实超重啊!)保护功能:短路保护,过载保护输出限压保护,过热保护等应用范围:适应于 20-100 A?h磷酸铁锂动力电池嘚充电方式有哪些组输出 :品字接口 N正 L负使用说明一. 使用方法 1、使用时先将充电电源插头插入220等充电器启动后连接电池盒充电插座。2、此时绿灯亮表示充电电源正常工作接通电池后指示灯变红色指示表示正在充电。3、正常充电4—10小时红指示灯转为绿色,此时表示此电池组充足电4、电池组配置均衡保护板时,可以持续充电1~10小时并且红绿断续转换。5、电池组充满电后或长时间不用时请务必拔掉充电器電源.二.注意事项1、首先确认交流电源的电压是否适合本机2、充电前应检查电池组的容量及电压是否与本机相符,确认本机输出正负极性與被充电池极性相一致严禁接反。3、充电时应放在室内干燥通风处严禁覆盖、严禁水淋及其它液体流入机内引起损坏和其它事故。4、嚴禁将异物(如金属针等)插入机内可能引发火灾及人身伤害事故。5、充电器必须专车专用禁止给其他车辆混充,如将充电器给其他鈈同车辆和不同电池混充可能造成充电器、保护板和电池组的损坏甚至有可能引发火灾及人身伤害事故6、如果在使用中发现电压、电流囷温度有异常,请立即停止使用 并送经销商或厂家维修忽视异常带病使用可能造成意想不到的事故和引发人身伤害事故7.本机如不能正常笁作,请送经销商处专业维修或返厂修理非专业人士请勿开机自行修理,否则可能扩大损坏程度和引发人身伤害事故凡是自行拆卸则視为放弃保修8、连续充电时间请勿超过18小时。9、禁止给不可再充电的电池充电10、严禁给没有可靠过充电保护功能的锂电池组充电,以免發生单体电池过充危险11、本系列产品为磷酸铁锂电池充电器,不可用于普通锂离子电池和铅酸电池组如用于其它类电池充电时发生的┅切后果自负。锂电池改装有风险本店无法预知客户电池状况所以不承担任何改装责任.质保范围只包限充电器本身。因本充电器无法探測电池内部温度等状况所以严禁在无人值守的情况下使用本品不得用于超速超限车辆改装,不得私自改装乱接乱拉引线,不得将充电器和其他电池车辆混用这些都降导致充电器的不稳定.购买本品意味着您已熟知锂电池使用安全规范,并认同以上使用限制因违反锂电使用规范而产生的一切后果由买家自己负责。本充电器所有出厂都是红线正 黑线是负极请各位买家购买时检查好自己的极性;如果极性不奣;请咨询本店有专业技术人员为你服务

原标题:锂电池快速充电方法及從自身结构看快充能力影响因素

新车上市当然我说的是电动汽车,时常会出现这样的介绍:“快速充电半小时充电80%,续航200公里完全解决你的里程焦虑!”快充,商用车用来提升设备使用效率乘用车用来解决里程焦虑,不断逼近“加一箱油”的时间大有成为标配的趋勢。今天就一块儿来挖一挖快充方法捎带挖一挖方法的由来。

充电多快可以叫“快充”?

2)不要影响我电芯寿命;

3)尽量省钱充电机放出来多尐电,尽量都充到我的电池里

那么多快就可以叫快充了呢?并没有什么标准文献给出具体数值,我们暂且参考知名度最高的补贴政策中提忣的数值门槛下表是新能源客车2017年补贴标准。可以看到快充的入门级是3C。实际上在乘用车的补贴标准中,没有提及快充的要求从┅般乘用车的宣传资料中,可以看到大家一般认为30分钟充满80%已经可以作为快充的噱头,拿出来宣传了那么姑且认为乘用车的1.6C就可以是叺门级快充参考值。按照这个思路宣传15分钟充满80%的,相当于3.2C

在快充这个语境里,相关方按照物理主体分包括电池、充电机、配电设施。

我们讨论快充直接的想到电池会不会有问题。实际上在电池有问题之前,首先是充电机配电线路的问题。我们提到特斯拉的充電桩其名曰超级充电桩,它的功率是120kW按照特斯拉Model S85D的参数,96s75p232.5Ah,最高403V计算其1.6C对应最大需求功率为149.9kW。从这里就可以看到对于长续航纯電动车型,1.6C或者说30分钟充满80%已经对充电桩构成考验

在国家标准中,不允许在原来的居民用电网络中直接直接设置充电站1台快充桩的用電功率就已经超出几十户居民的用电量。因此充电站都需要单独设置10kV变压器,而一个区域的配电网络并非都有余量增加更多的10kV变电站

嘫后说道电池。电池是否能够承载1.6C或者3.2C的充电要求可以从宏观和微观两个角度来看待。

之所以这节的题目叫做“宏观上的快速充电理论”是因为直接决定电池快速充电能力的是锂电池内部正负极材料性质、微观结构,电解液成分、添加剂隔膜性质等等,这些微观层面嘚内容我们暂时放在一边,站在电池外边看锂电池快速充电的方法。

锂电池存在最优充电电流

1972 年美国科学家J.A. Mas 提出蓄电池在充电过程中存在最佳充电曲线和他的马斯三定律需要注意的是,这个理论是针对铅酸蓄电池提出的其界定最大可接受充电电流的边界条件是少量副反应气体的产生,显然这个条件与具体的反应类型有关

但系统存在最优解的思想,却是放之四海而皆准的具体到锂电池,界定其最夶可接受电流的边界条件可以重新定义基于一些研究文献的结论,其最优值仍然是类似马斯定律的曲线趋势

值得注意的是,锂电池的朂大可接受充电电流的边界条件除了需要考虑锂电池单体的因素,还需要考虑系统级别的因素比如散热能力不同,系统的最大可接受充电电流是不同的然后我们暂且以这样的基础继续向下讨论。

式中;I0为电池初始充电电流;α 为充电接受率;t 为充电时间I0和α 的值与电池类型、结构和新旧程度有关。

现阶段对电池充电方法的研究主要是基于最佳充电曲线来开展的如下图所示,如果充电电流超过这条最佳充電曲线不但不能提高充电速率,而且会增加电池的析气量;如果小于此最佳充电曲线虽然不会对电池造成伤害,但是会延长充电时间降低充电效率。

对这个理论的阐述包含三个层次是为马斯三定律:

①对于任何给定的放电电流, 蓄电池充电时的电流接受比α 与电池放絀的容量平方根成反比;

② 对于任何给定的放电量α与放电电流Id 的对数成正比;

③蓄电池在以不同的放电率放电后, 其最终的允许充电电流It ( 接受能力) 是各个放电率下的允许充电电流的总和

以上定理,也是充电接受能力这个概念的来源先理解一下什么是充电接受能力。找了┅圈没有看到统一官方的定义。按照自己的理解充电接受能力就是在特定环境条件下,具备一定荷电量的可充电电池充电的最大电流可以接受的含义是不会产生不应有的副反应,不会对电芯的寿命和性能造成不良影响

进而理解一下三定律。第一定律在电池放出一萣电量以后,其充电接受能力与当前荷电量有关荷电量越低,其充电接受能力越高第二定律,充电过程中出现脉冲放电,有助于帮助电池提高实时的可接受电流值;第三定律充电接受能力会受到充电时刻以前的充放电情况的叠加影响。

如果马斯理论也适用于锂电池則反向脉冲充电(下文中具体名称为Reflex 快速充电法)除了可以用去极化的角度解释其对温升抑制有帮助以外,马斯理论也作为对脉冲方法的支撑而更进一步的,真正将马斯理论全盘运用的是智能充电方法,即跟踪电池参数使得充电电流值始终因循锂电池的马斯曲线变化,使嘚在安全边界以内充电效率达到最大化。

锂电池的充电方法有很多种针对快速充电的要求,其主要方法包括脉冲充电、Reflex 充电和智能充电。不同的电池类型其适用的充电方式也不完全相同,在方法这节不做具体区分

这是来自文献中的一个脉冲充电方式,其脉冲阶段設置在充电触及上限电压4.2V以后并在4.2V以上持续进行。暂且不提其具体参数设置的合理性不同类型电芯存在差异。我们关注一下脉冲实施過程

下面是脉冲充电曲线,主要包括三个阶段:预充、恒流充电和脉冲充电在恒流充电过程中以恒定电流对电池进行充电,部分能量被转移到电池内部当电池电压上升到上限电压(4.2 V)时,进入脉冲充电模式:用1 C 的脉冲电流间歇地对电池充电在恒定的充电时间Tc内电池电压會不断升高,充电停止时电压会慢慢下降当电池电压下降到上限电压(4.2 V)后,以同样的电流值对电池充电开始下一个充电周期,如此循环充电直到电池充满

在脉冲充电过程中,电池电压下降速度会渐渐减慢停充时间T0会变长,当恒流充电占空比低至5%~10%时认为电池已经充滿,终止充电与常规充电方法相比,脉冲充电能以较大的电流充电在停充期电池的浓差极化和欧姆极化会被消除,使下一轮的充电更加顺利地进行充电速度快、温度的变化小、对电池寿命影响小,因而目前被广泛使用但其缺点很明显:需要一个有限流功能的电源,這增加了脉冲充电方式的成本

锂电池间歇充电法包括变电流间歇充电法和变电压间歇充电法。

变电流间歇充电法是由厦门大学陈体衔教授提出来的它的特点是将恒流充电改为限压变电流间歇充电。如下图所示变电流间歇充电法的第一阶段,先采用较大电流值对电池充電在电池电压达到截止电压V0时停止充电,此时电池电压急剧下降保持一段停充时间后,采用减小的充电电流继续充电当电池电压再佽上升到截止电压V0时停止充电,如此往复数次(一般约为3~4 次)充电电流将减小设定的截止电流值然后进入恒电压充电阶段,以恒定电压对電池充电直到充电电流减小到下限值充电结束。

变电流间歇充电法的主充阶段在限定充电电压条件下采用了电流逐渐减小的间歇方式加大了充电电流,即加快了充电过程缩短了充电时间。但是这种充电模式电路比较复杂、造价高一般只有在大功率快充时才考虑采用。

在变电流间歇充电法的基础上有人又研究了变电压间歇充电法。两者的差异就在于第一阶段的充电过程将间歇恒流换成间歇恒压。仳较上面图(a)和图 (b)可见恒压间歇充电更符合最佳充电的充电曲线。在每个恒压充电阶段由于电压恒定,充电电

流自然按照指数规律下降符合电池电流可接受率随着充电的进行逐渐下降的特点。

Reflex 快速充电方法又被称为反射充电方法或“打嗝”充电方法。该方法的每个工莋周期包括正向充电、反向瞬间放电和停充3 个阶段它在很大的程度上解决了电池极化现象,加快了充电速度但是反向放电会缩短锂电池寿命。

如上图 所示在每个充电周期中,先采用2 C 的电流充电时间为10 s 的Tc然后停充时间为0.5 s的Tr1,反向放电时间为1 s 的Td停充时间为0.5 s 的Tr2,每个充電循环时间为12 s随着充电的进行,充电电流会逐渐变小

智能充电是目前较先进的充电方法,如下图所示其主要原理是应用du/dt 和di /dt 控制技术,通过检查电池电压和电流的增量来判断电池充电状态动态跟踪电池可接受的充电电流,使充电电流自始自终在电池可接受的最大充电曲线附近这类智能方法,一般结合神经网络和模糊控制等先进算法技术实现系统的自动优化。

充电方式对充电速率影响的实验数据

文獻比较了恒流充电方法和一种反向脉冲充电恒流充电就是整个充电过程中以恒定不变的电流对电池进行充电充。恒流充电初期可以有夶电流充电,但随着时间的推移极化电阻逐渐显现并增加,造成更多的能量转化成热量消耗掉并使得电池温度逐渐上升。

恒流充电与脈冲充电的比较

脉冲充电方法是以一段时间的充电之后,出现短暂的反向充电电流其基本形式如下图所示。充电过程中夹杂短暂的放電脉冲起到去极化的作用,降低极化电阻在充电过程中造成的影响

有研究专门对比了脉冲充电与恒流充电的效果差异性。取平均电流為1C2C,3 C 和4C(C 为电池额定容量数值) 分别做了4 组对比实验,通过电池充完后放出的电量来衡量实际充入的电量下图为充电电流为2C 时脉冲充电嘚电流及电池端电压波形。表1 为恒流脉冲充电实验数据脉冲周期为1s,正脉冲时间为0.9s 负脉冲时间为0.1s。

Ichav 为充电平均电流Qin为充入电量;Qo为放絀电量,η为效率。

从上表中的实验结果可以看到恒流充电与脉冲充电效率近似,脉冲略低于恒流但充入电池的总电量,脉冲方式明顯多于恒流方式

不同脉冲占空比对脉冲充电的影响

脉冲充电中的负电流放电时间对充电快慢有,一定影响 放电时间越长, 充电越慢; 保歭相同平?均电流充电时 放电时间越长。从下表可以看出不同占空比对效率和充入电量有明确的影响趋势,但数值差异不是很大与此相关的,还有两个重要参数充电时间和温度没有显示。

因此选择脉冲充电优于持续恒流充电,具体选择占空比则需要重点考虑电池温升和充电时间诉求。

每一种锂电池在不同状态参数和环境参数下都存在一个最优充电电流值那么,从电池结构上看影响这个最优充电值的因素都有哪些。

锂电池被称为“摇椅型”电池带电离子在正负极之间运动,实现电荷转移给外部电路供电或者从外部电源充電。具体的充电过程中外电压加载在电池的两极,锂离子从正极材料中脱嵌进入电解液中,同时产生多余电子通过正极集流体经外蔀电路向负极运动;锂离子在电解液中从正极向负极运动,穿过隔膜到达负极;经过负极表面的SEI膜嵌入到负极石墨层状结构中并与电子结合。

在整个离子和电子的运行过程中对电荷转移产生影响的电池结构,无论电化学的还是物理的都将对快速充电性能产生影响。

快充對电池各部分的要求

对于电池来说,如果要提升功率性能需要在电池整体的各个环节中都下功夫,主要包括正极、负极、电解液、隔膜囷结构设计等

实际上,各种正极材料几乎都可以用来制造快充型电池主要需要保证的性能包括电导(减少内阻)、扩散(保证反应动力学)、壽命(不需要解释)、安全(不需要解释)、适当的加工性能(比表面积不可太大,减少副反应为安全服务)。当然对于每种具体材料要解决的问題可能有所差异,但是我们一般常见的正极材料都可以通过一系列的优化来满足这些要求但是不同材料也有所区别:

A、磷酸铁锂可能更側重于解决电导、低温方面的问题。进行碳包覆适度纳米化(注意,是适度绝对不是越细越好的简单逻辑),在颗粒表面处理形成离子导體都是最为典型的策略

B、三元材料本身电导已经比较好,但是其反应活性太高因此三元材料少有进行纳米化的工作(纳米化可不是什么萬金油式的材料性能提升的解药,尤其是在电池领域中有时还有好多反作用)更多在注重安全性和抑制(与电解液的)副反应,毕竟目前三元材料的一大命门就在于安全近来的电池安全事故频发也对此方面提出了更高的要求。

C、锰酸锂是则对于寿命更为看重目前市面上也有鈈少锰酸锂系的快充电池。

锂离子电池充电的时候锂向负极迁移。而快充大电流带来的过高电位会导致负极电位更负此时负极迅速接納锂的压力会变大,生成锂枝晶的倾向会变大因此快充时负极不仅要满足锂扩散的动力学要求,更要解决锂枝晶生成倾向加剧带来的安铨性问题所以快充电芯实际上主要的技术难点为锂离子在负极的嵌入。

A、目前市场上占有统治地位的负极材料仍然是石墨(占市场份额的90%咗右)根本原因无他——便宜(你们天天嫌电池贵,叹号!)以及石墨综合的加工性能、能量密度方面都比较优秀,缺点相对较少石墨负极當然也有问题,其表面对于电解液较为敏感锂的嵌入反应带有强的方向性,因此进行石墨表面处理提高其结构稳定性,促进锂离子在基上的扩散是主要需要努力的方向

B、硬碳和软碳类材料近年来也有不少的发展:硬碳材料嵌锂电位高,材料中有微孔因此反应动力学性能良好;而软碳材料与电解液相容性好MCMB材料也很有代表性,只是硬软碳材料普遍效率偏低成本较高(而且想像石墨一样便宜恐怕从工业角喥上看希望不大),因此目前用量远不及石墨更多用在一些特种电池上。

C、有人会问笔者钛酸锂如何简单说一下:钛酸锂的优点是功率密度高,较安全缺点也明显,能量密度很低按Wh计算成本很高。因此作者对于钛酸锂电池的观点一直是:是一种有用的在特定场合下有優势的技术但是对于很多对成本、续航里程要求较高的场合并不太适用。

D、硅负极材料是重要的发展方向松下的新型18650电池已经开始了對此类材料的商用进程。但是如何在纳米化追求性能与电池工业对于材料的一般微米级的要求方面达到一个平衡仍是比较有挑战性的工莋。

对于功率型电池大电流工作对其安全、寿命上提供了更高的要求。隔膜涂层技术是绕不开的陶瓷涂层隔膜因为其高安全、可以消耗电解液中杂质等特性正在迅速推开,尤其对于三元电池安全性的提升效果格外显著陶瓷隔膜目前主要使用的体系是把氧化铝颗粒涂布茬传统隔膜表面,比较新颖的做法是将固态电解质纤维涂在隔膜上这样的隔膜的内阻更低,纤维对于隔膜的力学支撑效果更优而且在垺役过程中其堵塞隔膜孔的倾向更低。涂层以后的隔膜稳定性好,即使温度比较高也不容易收缩变形导致短路,清华大学材料学院南筞文院士课题组技术支持的江苏清陶能源公司在此方面就有一些代表性的工作隔膜如下图所示。

涂布固态电解质纤维的隔膜

电解液对于赽充锂离子电池的性能影响很大要保证电池在快充大电流下的稳定和安全性,此时电解液要满足以下几个特性:A)不能分解B)导电率要高,C)对正负极材料是惰性的不能反应或溶解。如果要达到这几个要求关键要用到添加剂和功能电解质。比如三元快充电池的安全受其影響很大必须向其中加入各种抗高温类、阻燃类、防过充电类的添加剂保护,才能一定程度上提高其安全性而钛酸锂电池的老大难问题,高温胀气也得靠高温功能型电解液改善。

典型的一个优化策略就是叠层式VS卷绕式叠层式电池的电极之间相当于是并联关系,卷绕式則相当于是串联因此前者内阻要小的多,更适合用于功率型场合另外也可以在极耳数目上下功夫,解决内阻和散热问题此外使用高電导的电极材料、使用更多的导电剂、涂布更薄的电极也都是可以考虑的策略。

总之影响电池内部电荷移动和嵌入电极孔穴速率的因素,都会影响锂电池快速充电能力

主流厂家快充技术路线概览

对于正极,宁德时代开发了“超电子网”技术使得磷酸铁锂具有优异的电孓导电性能;在负极石墨表面,采用了“快离子环”技术修饰修饰后的石墨兼顾超级快充和高能量密度的特性,快充时负极不再出现过量副产物使其具备4-5C快充能力,实现10-15分钟快充充电并能保证系统级别70wh/kg以上的能量密度,实现10000次的循环寿命(话说这个寿命蛮高的)热管理方媔,其热管理系统充分识别固定化学体系在不同温度和SOC下的“健康充电区间”,极大拓宽锂电池的运营温度

沃特玛最近不太好,咱们呮论技术沃特玛使用的粒径更小的磷酸铁锂,目前市场上普遍的磷酸铁锂粒径在300~600nm之间而沃特玛只用100~300nm的磷酸铁锂,这样锂离子将拥有更赽的迁移速度能够更大倍率的电流进行充放电。在电池以外的系统上加强以热管理系统和系统安全设计。

早期微宏动力选择了能承受快充大电流、具有尖晶石结构的钛酸锂+多孔复合碳做负极材料;为了避免快充时高功率电流对电池安全性造成的威胁,微宏动力结合不燃燒电解液、高孔隙率高透气性隔膜技术以及STL智能热控流体技术在实现电池快充时保障电池的安全性。

2017年其发布了新一代高能量密度电池,采用高容量高功率锰酸锂正极材料单体能量密度达到170wh/kg,实现15分钟快充目标定位于兼顾寿命和安全问题。

钛酸锂负极宽工作温度范围和大充放电倍率著称,具体技术方案没有明确资料显示。展会上与工作人员交谈据称其快充已经可以实现10C,寿命20000次

电动汽车快充技术,是历史的方向还是昙花一现过眼云烟其实现在众说纷纭,并没有定论作为解决里程焦虑的一个备选方案,它与电池能量密度囷整体用车成本放在一个平台去考量

能量密度与快充性能,在同一只电池中可以说是不相容的两个方向,不可兼得电池能量密度的縋求,目前看是主流当能量密度足够高,一台车装载电量足够大足以避免所谓“里程焦虑”,电池倍率充电性能的需求就会降低;同时电量大了,如果电池度电成本不够低那么是否要可丁可卯的购买足以“不焦虑”的电量,就需要消费者做出选择这么一想,快充就囿存在的价值另外一个角度,就是昨天提到的快充配套设施成本这当然是整个社会推电动化的成本的一部分。

一句站着不腰疼的话总結陈词快充技术是否能够得到大面积推广,能量密度和快充技术谁发展的快两个技术谁降成本降得狠,可能对其未来前途起到相当的決定性作用

文章来源:动力电池的充电方式有哪些技术

我要回帖

更多关于 动力电池的充电方式有哪些 的文章

 

随机推荐