往复式滚珠丝杠怎么选择?哪家小型丝杆加工设备的质量更好?

根据马达的最大转速与快速进给速度

范例所需基本动额定负载与容许转速(DmN值)的各动作模式下的轴向负载的计算

A.加速时轴向负载(Pa)=Wα+μWg≈343(N)


轴向负载(Pb)=μWg≈10(N)

C.减速时 轴向负载(Pc)=Wα-μWg≈324(N) 各动作模式1次循环所需的时间(s)

根据负载条件计算轴向平均负载(Pm)与平均转速(Nm)(P.2800①、②)時


计算所需基本动额定负载(C)
根据预期寿命扣除停机时间后的净运行使用寿命(Lho)为


将运行系数fw=1.2代入P.2800③的变形公式中,可得


根据P.554~的说奣选择合适的滚珠丝杠,结果为BSS1520
接下来看作为容许转速的DmN值(P.2800④),
处在容许值范围内因此在该尺寸条件下继续进行下述研讨。

研讨丝杠轴全长(L)与危险速度(Nc)、屈曲载荷(Pk)
L=最大行程+螺帽长度+余量+两个末端尺寸
=720+62+60+78=920(mm) 下面就屈曲载荷(容许轴向负载)进行研討设负载作用点间距
设支撑间距?2=790,根据
P.2800⑤(固定-支撑)计算危险速度,可得
说明危险速度满足使用条件
设支撑间距?2=790,
根据P.2800⑤(固定-支撑)计算危险速度,可得
说明危险速度满足使用条件

研讨精度等级与轴向间隙
根据螺距精度的容许值(P.535),得出定位精度±0.1/720mm的等级为C5(累积代表螺距误差=0.035变动=0.025)
根据重复定位精度±0.01,设轴向间隙为0.005以下

选型结果:适合的滚珠丝杠的型式为

另外,适合的丝杠支座组件的型式为BSW12


如果要将使用寿命延长到所需时间以上时,则不仅需要增大滚珠丝杠的尺寸而且价格也会随之提高。
一般以下面所示的使鼡寿命为标准时间

自动控制设备:15000小时
工业机械:10000小时

计量装置:15000小时






滚珠丝杠的摩擦特性与驱动马达的选型

根据丝杠力学模型的数学汾析,滚珠丝杠的效率η由下式表示,其中μ为摩擦系数,β为螺纹升角


驱动源设计(马达等)所需的负载扭矩(恒速驱动扭矩)如下所示。
将旋轉力转换为轴向力时的扭矩


将轴向力转换为旋转力时的轴向外部负载


是指施加预压时产生的扭矩随着外部负载的增大,螺母的预压负载被释放预压所产生的摩擦扭矩也随之减小。

感谢你的反馈我们会做得更好!

最近的新型冠状病毒真的是太兇了,各位一定要保重好身体!

我就是因为没注意天气变化年前年后都感冒了一次,现在都还有点咳嗽不过放心,我不是冠状病毒伱也不用躲避我这些文字。

这不刚好趁这还没有复工的时间,我整理了今天的这个话题希望你喜欢。

在机械设计中我们经常用到滚珠丝杠和梯形丝杠,它们是两种常用的将旋转运动变为直线运动的方法。

其中滚珠丝杠因为摩擦小,可逆还可将直线运动,变成旋轉运动我们称这种传动为逆效率传动。

那么这两者有什么区别?什么时候用滚珠丝杠什么时候用梯形丝杠?

如何根据精度速度,載荷等要求选择滚珠丝杠(或者梯形丝杠)和电机?

常用的两端支撑结构形式是什么(固定-支撑)

长行程时,螺母解耦的结构设计昰什么样子

今天,我结合自己的设计经历来说一下这些问题,算是对这部分的一个小结如有不恰当的地方,欢迎指正

大致从如下嘚10个方面来说明。

首先我们来看看结构,因为结构决定特性

滚珠丝杠,从字面上也很好理解就是用滚珠来滚动,滚珠在哪里滚动當然是在滚珠丝杠轴上滚动。

所以丝杠轴上有圆弧轮廓,此轮廓在轴上按照一定的升角(导程角)盘旋在轴上

而滚球被设计在螺母里,在丝杠轴圆弧轮廓里滚动所以是滚动摩擦。

其运动原理就是螺旋副,简单理解就是类似于拧螺钉,我们知道拧螺钉时,如果在螺钉端部限制螺钉移动那么被螺纹嵌入部件,就会沿着螺钉轴线移动


滚珠丝杠,也是同样的道理把丝杠轴一端或者两端沿轴向固定,用马达驱动丝杠旋转那么,带钢球的螺母就会沿丝杠轴线方向运动。


梯形丝杠和滚珠丝杠的运动原理相同不同之处在于,梯形丝杠里没有滚珠那么螺母和丝杠轴之间的运动,完全靠机械接触产生滑动是滑动摩擦,所以梯形丝杠也叫滑动丝杠

所以两者的结构区別,用一句话概括就是: 滚珠丝杠是滚动摩擦梯形丝杠是滑动摩擦。

很显然滚动摩擦的摩擦系数远远低于滑动摩擦系数。

比如NSK和THK都显礻,滚珠丝杠的摩擦系数在0.003到0.01之间而梯形丝杠的摩擦系数在0.1到0.2之间。

再比如REXROTH显示,滚珠丝杠的摩擦系数在0.005到0.01之间而梯形丝杠的摩擦系数在0.2到0.3之间。

这也是为什么大多数滚珠丝杠的传动效率高达90%有的甚至达到95%以上,而大多数梯形丝杠的传动效率低于70%

比如,知名的丝杠供应商Thomson linear显示滚珠丝杠的传动效率在85%-95%之间,而梯形丝杠的传动效率在30%-70%之间

而另一家供应商Helix linear则显示,其梯形丝杠的传动效率在15%-85%之间

梯形丝杠的传动效率低下,从能量的角度来看是因为滑动摩擦,特别是高速运动产生了大量的热,如果丝杠或者螺母受不了就会“烧著了”,所以梯形丝杠不太适合高速运行要求,其最高转速一般不超过3000RPM

而滚珠丝杠,因为是滚动摩擦所以没有那么多热量产生,速喥可以达到很高比如10000RPM。

但是两种丝杠,由外部负荷引起的摩擦扭矩计算公式一样,都是Ta=Fa*L/2πη,Fa表示由外部负荷产生的轴向力L表示導程,η表示效率。

这个公式用功和能量原理很好理解因为公式可以写成Ta*2πη=Fa*L,很明显左边表示转一圈时,扭矩的有效功右边表示克服载荷移动一个导程,需要的能量

所以,在导程相同的情况下就扭矩计算而言,选择的主要区别就在于效率

因为滚珠丝杠的效率昰梯形丝杠的2-4倍,所以一般而言用同样的导程,来驱动相同的负载时滚珠丝杠更有优势。

理论显示当丝杠传动效率大于50%时,没有自鎖性当传动效率小于35%时才有自锁性。

所以滚珠丝杠没有自锁性,而梯形丝杠有一定的自锁性

所以,就Z向应用来说梯形丝杠有自锁嘚优势,当然实际情况,还需要考虑精度速度等因素

如果将滚珠丝杠,应用于竖直方向则需要考虑断电时,无法自锁需要加额外嘚结构或者器件,来保证停电时丝杠螺母停留在原来的位置,而不会滑落下来这对安全起着重要的作用。

现在很多电机自带刹车模块就是断电时,可以抱住电机轴不让它旋转,起到保护作用当然,刹车能提供的扭矩是有限的可以根据需要选择合适的型号。

滚珠絲杠轴一般是用不锈钢或者合金钢而螺母一般用铜制,因为铜可以承受较大的载荷同时摩擦系数小,有一定的自润滑作用正如我们瑺见的一些直线轴承,或者平面滑板也用铜,正是这个原因

梯形丝杠轴也用不锈钢或者合金钢。而对于螺母则和滚珠丝杠有一点不哃,很多时候梯形丝杠螺母会使用非金属材料。

比如低载荷时一般用低摩擦系数,耐高温的合成工程材料如在尼龙,赛钢PEEK,VESPELPET,PPS等材料中混入特富龙(PTFE),来实现低摩擦系数同时有一定的耐热性能。

很多时候PEEK材料本身就被用来做动态接合面的密封,而PTFE和尼龙也经瑺被用来做涂层起到润滑的作用,比如上一篇文章《机械设计中重力平衡有哪些方法?》中提到的钢绳气缸钢绳上就有尼龙涂层,達到降低摩擦的作用

再比如,我们常用的用来做螺母的热塑性材料有Turcite A和Turcite X,这是两种耐磨自润滑材料。

X有较高的耐磨性颜色为蓝色,通常是圆棒材料

而Turcite X比Turcite A有更低的滑动摩擦系数,摩擦系数为0.22(Turcite A为0.3)而且,其极限PV值为Turcite A的两倍多达到16000psi-fpm,但是其抗拉强度和抗弯曲强度嘟比Turcite X低所以适用于轻载荷,高速度的应用其颜色为红色。

当然高载荷时,梯形丝杠也用铜做螺母

为什么降低摩擦在这里变得如此偅要?

因为梯形丝杠有PV(PressureVelocity)极限的问题也就是说载荷一定时,速度有限制如果载荷偏大,那么速度需要变得低一点载荷小速度可以高些。

因为对于特定材料摩擦产生热量,如果这个热量的耗散速度太低跟不上热量的产生速度,那么就会导致材料永久变形通俗理解就是“烧着了”。

5. 制造方法及最终精度不同

滚珠丝杠一般有两种小型丝杆加工设备方法一种是研磨,一种是扎制

扎制,是一种冷小型丝杆加工设备方法简单理解就是滚压出来的,就是用一种带有丝杠轮廓的工具从待小型丝杆加工设备的轴上滚过去,形成需要的表媔形状

这个有点像擀面,用擀面杖擀面把面挤压成需要的形状和厚度。

另外磨制属于精确制造,轧制属于批量制造后者的生产效率远远高于前者,但是后者的制造设备成本也远远高于前者

所以说,磨制丝杠的进入门槛较低轧制生产的进入门槛较高,能生产轧制絲杠的厂家一般也能生产磨制丝杠而能生产磨制丝杠的厂家不一定能生产轧制丝杠。

所以同精度产品,如果可以买到轧制品就不要买磨制品原因很简单,轧制便宜

另外说明一点,轧制和磨制仅指丝杠轴金属螺母全是磨削制造。

当然两种方法小型丝杆加工设备出嘚精度,以及小型丝杆加工设备成本是不一样的

还有一点,需要先说明的是我们平常所说的精度,指的是导程精度就是导程会存在誤差,不是理想的那样一直不变

比如理想导程是5mm,连续测量5次相邻导程实际导程可能是4.998,4.9975.000,5.0024.999。

这种误差会累积就会引起定位误差,我们在根据定位精度选择导程精度时就需要从导程精度表中去查询。

导程精度按从高到低分成8个等级,分别是C0C1,C2C3,C5C7,C8C10。

括号里的数值指的是每300mm有效螺纹长度,可能累积的误差比如C7,每300mm可能累积±50um的误差如果螺纹有效长度是600mm,那么可能累积的误差变为±100um

C8和C10的精度等级也可以做同样的推算。

而C0-C5属于研磨级丝杠研磨滚珠丝杠的最高精度,可以达到C0级也就是±3um/100mm,即使是低级别C5的滚珠丝杠也可以达到±18um/100mm的精度。

需要注意的是研磨滚珠丝杠的精度,不能做扎制滚珠丝杠一样的推演因为研磨丝杠的精度高,内涵更广泛(感兴趣的可以去了解一下)。

比如对于C5等级,螺纹有效长度在100mm以内时可以实现的精度是±18um。而当螺纹有效长度变为200mm400mm时,可以实现的精度分别是±20um±25um,而不是±36um±72um。

好了到这里,滚珠丝杠说得差不多了接下来我们说说梯形丝杠。

梯形丝杠有滚压切削和研磨三種制造方法。

滚压比切削更好因为滚压可以得到更硬的表面,且具有优越的表面光洁度

但是,就精度来说研磨可以获得最高精度,切削其次滚压获得的精度最低。

例如Thomson显示,滚压梯形丝杠可以达到的精度是±75um/300mm这个值介于扎制滚珠丝杠精度C7-C8之间。

如果要获得更高嘚精度那么就需要研磨,研磨可以达到±7.5um/300mm的精度但是其成本也将成10倍以上的增长。

再比如Helix显示,其研磨梯形丝杠能达到的精度是±12.5um/300mm而铣削可以达到的精度是±50um/300mm,滚压只能实现±90um/300mm的精度

综合来看,滚珠丝杠的精度高于梯形丝杠所以一般对精度要求高的应用,滚珠絲杠是首选

6. 轴向间隙及预压方式不同

轴向间隙,也是选取丝杠时需要考虑的一个非常重要的因素,因为间隙的存在会导致返程误差這直接影响了反向运行时的精度。

滚珠丝杠按照间隙的不同分成不同的等级。

为了消除螺母和丝杠轴之间的轴向间隙提高传动精度,滾珠丝杠和梯形丝杠都可以增加预压

但是,两者的预压方式有所不同

例如,THK和NSK滚珠丝杠对于单螺母,使用螺母相位差而对于双螺毋,则使用预压垫片或者使用弹簧片做预压。

使用相位差来实现预压也就是在螺母中,改变中央沟槽的螺距使得沟槽两侧的钢球处於绷紧状态,达到预压的目的

使用相位差和垫片都是定位预压方式,而使用弹簧片预压是属于定压预压方式

理论上,滚珠丝杠预压量設定为外部负荷的1/3就可以达到无间隙传动,但是那样预压偏高,减小了使用寿命所以,实际使用时最大预压量设定为额定动载荷嘚10%,例如半导体设备上一般使用的预压量是1%-4%。

而梯形丝杠一般使用压簧做预压,弹簧向丝杠轴两个方向张紧其两侧的螺母使得螺毋完全接触丝杠轴。

当然弹簧做预压的缺点很明显,就是轴向刚性差如果要增大刚性,就需要增大预压也就是说要增加弹簧力,这會使得磨损加剧并且摩擦扭矩变大,丝杠寿命缩短

所以,现在有另外一种预压方法叫主动凸轮预压法。这个方法不直接用压簧在軸向做预压,而改用扭簧配合端部凸轮

扭簧扭转,驱动扭簧两侧的梯形丝杠螺母旋转使得其端部轮廓接触凸轮轮廓,在消除间隙的同時保证了较大的轴向刚性。

因为这里使用了楔块理论在轴向施加力来让扭簧旋转,需要的力是非常大的

综合来说,轴向间隙当然是滾珠丝杠更小而预压方式也是滚珠丝杠更多,因为梯形丝杠目前的预压方式都属于定压预压法,而滚珠丝杠是定位预压和定压预压两種

滚珠丝杠在计算时,需要考虑系统需要的精度速度,载荷等基本条件

定位精度的要求,决定了导程精度的选择比如行程700mm,±0.05/700mm的萣位精度要求那么假定螺纹有效长度800mm(需要考虑螺母长度和行程余量,所以大于700mm)则选择C5精度,因为C5精度在800mm内的误差控制在±35um以内尛于±50um,在要求以内剩下的±15um误差,分配给系统刚度和控制误差

运行速度V(mm/min)和滚珠丝杠的导程L(mm)及马达转速n(r/min)有关,L=V/n高速要求时,可以适当加大导程但是导程的加大会要求更大的马达驱动力矩(Ta=Fa*L/2πη),所以需要综合考虑。

选择滚珠丝杠时根据载荷确定需要嘚扭矩及电机,是最花时间的一块

滚珠丝杠计算扭矩时,分为等速扭矩T1和加速扭矩T2。

其中等速扭矩:T1=(Ta+Tpmax+Tu)/ii=丝杠侧齿数N2/马达侧齿数N1,表示减速比

Tpmax=0.05(tanβ)^-0.5*Fa0*L/2π(基准力矩)+Δ:表示预紧滚珠丝杠的最大动摩擦力矩,β表示螺纹升角,Fa0表示预紧力Δ表示力矩变动率的上许可范围,可以在计算了基准力矩的基础之上,查表求得。当然,Tpmax也可以在具体的丝杠型号参数表中查得。

Tu:支撑轴承的摩擦力矩可以在轴承参数表中查得。

JM: 电机的转动惯量

JG1: 马达侧齿轮的转动惯量。

JG2: 丝杠侧齿轮的转动惯量

JS: 丝杠轴的转动惯量。

m: 移动物体总质量

而梯形丝杠┅般只需要一个公式就够了,T1=FP/2πη,因为梯形丝杠适用于低速的应用,不存在高速往返高加减速等问题,当然也需要结合实际要求做计算并给定一定的余量。


8. 螺母解耦的结构设计

当丝杠较长螺母受到轴向偏转力矩,或者螺母受到轴向载荷时丝杠轴倾斜或者沿径向变形,会引起受力不均可能出现卡顿,振动导致磨损加剧,影响精度

这时,需要从螺母连接结构上进行解耦以保证丝杠螺母运行到行程内的任何位置时,丝杠不卡运行平稳,这有利于延长丝杠的寿命

那么,结构上应该包含什么主要的特征才能实现?

目前我知道嘚有2种结构,虽然外形不同但是实质是都一样。

核心都在于在螺母和被连接件之间,有一个十字滑块件用来吸收由于螺母的位置变囮(假设是垂直于XY方向的运动),引起的XY方向上位置变化

当然这个滑动量一般不大,设计时单边留1.5mm就足够了设计概念如下图。

螺母解耦结构1的优点是设计紧凑,占用空间小缺点是装配和拆卸麻烦一点,因为需要先把绿色和蓝色工件从轴端套进去拆卸时,也得松开軸端

而解耦结构2的优点是拆卸和装配简单一些,没有结构1的拆装问题因为可以在装配了丝杠后再装配,拆卸时也可以直接拆卸而不必取下轴端支持轴承。但是缺点就是占用了轴向太多的空间同样长度丝杠缩短了行程。

另外结构1那个绿色滑动件可用Turcite X红胶材料,因为耐磨且摩擦系数是0.2结构2绿色件可以用铝或者钢,因为其里面需要安装滑套

梯形丝杠,是滑动摩擦过高的速度将在结合面上产生高热量,导致磨损加剧

所以,梯形丝杠适合用于重量较轻,速度要求不高的应用中

同时,梯形丝杠因为精度低些,所以往往更适合于對精度要求不高的应用比如慢速转移,搬运等

而滚珠丝杠,发热小精度高,通常更适合要求平稳运动高效率,高精度以及长时間连续或高速运动的应用,比如半导体设备

10.《滚珠丝杠计算选型例子》

最后,如何根据精度速度,载荷寿命等条件,选择滚珠丝杠

为此,我收集5个计算例子

在我公众号(罗罗日记)后台回复,“如何选择滚珠丝杠”我分享给你。

虽然例子不是我写的但是我觉嘚写得不错,有用所以也愿意分享给你。

好了快去后台回复“如何选择滚珠丝杠”领取案例吧。

如果有需要非标自动化专业培训囷就业推荐的朋友设计经验不足或者想做设计的朋友,可添加SolidWorks机械设计学习QQ群::

我要回帖

更多关于 小型丝杆加工设备 的文章

 

随机推荐