内存ddr1 ddr2 区别DDR3 DDR4代区分

 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
DDR1-3内存
下载积分:900
内容提示:DDR1-3内存
文档格式:TXT|
浏览次数:0|
上传日期: 09:06:44|
文档星级:
该用户还上传了这些文档
DDR1-3内存
官方公共微信新浪广告共享计划>
广告共享计划
SDR,DDR1/2/3,GDDR1/2/3/4/5&详细规格解释(下)
&GDDR4的技术特性:
使用DDR3的8bit预取技术,以较低的核心频率达到更高带宽,但延迟增加;
采用数据总线转位技术(DBI,Data Bus
Inversion,下文做详细介绍),提高数据精度,降低功耗;
地址线只有GDDR3的一半,多余线用于电源和接地,有利于提升频率,但导致延迟增加;
采用多重同步码(Multi-Preamble)技术,解决了GDDR3存在的爆发限制(Burst
Limitation),从连续地址读取少量数据时的性能大幅提升;
电压从1.8V降至1.5V;
同频功耗下降75%,2400MHz的GDDR4功耗只有2000MHz
GDDR3的一半;
采用136Ball FBGA封装,单颗32Bit,向下兼容GDDR3;
GDDR4的确更好超,但性能提升有限
由于采用了8bit预取技术,因此在相同频率下GDDR4的核心频率(即电容刷新频率)只有GDDR3的一半,理论上来讲GDDR4最高频率可达GDDR3的两倍。但值得注意的是,虽然核心频率通过8bit预取技术减半,但GDDR4与GDDR3的I/O频率是完全相同的,因此GDDR4频率提升的瓶颈在于I/O频率而不是核心频率。
由于制造工艺和技术水平的限制,虽然三星官方宣称早已生产出3GHz以上的GDDR4,但实际出货的GDDR4只有2GHz-2.5GHz,此后改进工艺的GDDR3也追平了这一频率。在相同频率下,GDDR4比起GDDR3虽然功耗发热低,但延迟大性能稍弱,再加上成本高产量小,GDDR4遭受冷落并不意外。
● 导致GDDR4失败的非技术方面原因
GDDR3是NVIDIA和ATI参与JEDEC组织后共同制定的显存标准,而GDDR4在标准制定过程中双方产生了较大的分歧。NVIDIA较为保守,认为应该保持DDR2
4bit预取技术不变,继续改进I/O控制器来提升频率;而ATI则比较激进,准备直接使用DDR3 8bit预取技术。
双方争执的结果就是在JEDEC组织中德高望重的ATI获胜(据称ATI有位高层在JEDEC身居要职),而NVIDIA则明确表示不支持GDDR4。因此GDDR4其实就是ATI一手策划的,但得不到NVIDIA支持的话,GDDR4立马就失去了6成以上的市场,由此导致DRAM厂不敢贸然投产。
最终只有三星一家生产了少量的GDDR4显存,其他家都在观望。当然其他DRAM厂商都没闲着,它们把精力都投在了深挖GDDR3的潜力当中,于是我们看到了GDDR3的频率节节攀升,GDDR4在没有成本优势的情况下,也没有频率优势,恰好当时的几代A卡更没有性能优势,GDDR4自然只有死路一条。
只有ATI生产过搭载GDDR4的显卡,数量虽然不多但横跨了三代产品:X1950XTX、HD2600XT和HD3870(也包括对应的专业卡)——与当年NVIDIA使用GDDR2的显卡数量相等。NVIDIA在遭遇滑铁卢后果断放弃了GDDR2,而ATI对于GDDR4则是难以割舍,三年时间三代产品都有使用,但一直都是非主流。
GDDR4的失败并不是技术原因,和当年的GDDR2相比它要成熟很多,没推起来的原因主要是对手太强:ATI的对手NVIDIA很强大,另外GDDR4的对手GDDR3生命力太顽强了。
即便使用了8bit预取技术,可GDDR4还是没有与GDDR3拉开频率差距,因为瓶颈在I/O控制器上面而不是内核,而GDDR5就是用来解决这一瓶颈的。
● GDDR5:恐怖的频率是如何达成的
和GDDR4一样,GDDR5采用了DDR3的8bit预取技术,核心频率显然不是瓶颈,如何提升I/O频率才是当务之急。但GDDR5并没有让I/O频率翻倍,而是使用了两条并行的DQ总线,从而实现双倍的接口带宽。
GDDR5各项总线工作频率示意图
双DQ总线的结果就是,GDDR5的针脚数从GDDR3/4的136Ball大幅增至170Ball,相应的GPU显存控制器也需要重新设计。GDDR5显存拥有多达16个物理Bank,这些Bank被分为四组,双DQ总线交叉控制四组Bank,达到了实时读写操作,一举将数据传输率提升至4GHz以上!
以往GDDR1/2/3/4和DDR1/2/3的数据总线都是DDR技术(通过差分时钟在上升沿和下降沿各传输一次数据),官方标称的频率X2就是数据传输率,也就是通常我们所说的等效频率。而GDDR5则不同,它有两条数据总线,相当于Rambus的QDR技术,所以官方标称频率X4才是数据传输率。比如HD4870官方显存频率是900MHz,而大家习惯称之为3600MHz。
失败乃成功之母,冒险使用GDDR5助RV770挑战GTX200
GDDR4的失败并没有阻挡ATI前进的脚步,在意识到GDDR4频率提升的瓶颈之后,GDDR5草案的制定就被提上日程,ATI和NVIDIA技术人员重新聚首,开展第二次合作共商大计。GDDR5吸取了前辈们的诸多优点,可谓是取其精华弃其糟粕,在I/O改进方面双方也不再有太多矛盾。
技术方面的问题不难解决,最难的是时间和进度。ATI在R600上面冒险使用512Bit显存控制器来提升显存带宽,结果输得一败涂地,于是RV670只好回归256Bit,导致性能原地踏步。而GDDR4相比GDDR3没有频率优势,因此ATI迫切的需要GDDR5迅速投产以满足新一代GPU的需要,RV770只有256Bit,急需高频显存的支持。
对手NVIDIA对于GDDR5当然很感兴趣,但却一点都不着急,保守的NVIDIA决定坚守GDDR3,GTX200核心使用了512Bit显存控制器来提升带宽。比起R600的环形总线,NVIDIA从256Bit到384Bit再到512Bit一步一个脚印走出来的交叉总线显然更加成熟。
以256Bit对抗512Bit,ATI只能将筹码全部押在GDDR5身上,于是在GDDR5标准尚未完全确立之前,ATI已经在紧锣密鼓的测试性能,并督促DRAM厂投产。可以说GDDR5和GDDR2/4一样也是个早产儿,但失败乃成功之母,有了完善的技术规格和制造工艺的支持,GDDR5一出世便令人刮目相看。
凭借GDDR5翻倍的数据传输率,HDBit将448Bit的GTX260挑落马下,迫使NVIDIA通过降价、提升规格、改进工艺等诸多手段来反击。128Bit的HD4770性能也完胜256Bit的9600GT并直逼9800GT。
GDDR5在GDDR3/4优秀特性的基础上,还有诸多改进和新特性,下面就对它们进行详细分析。
数据和地址总线转位技术:信号质量高、功率消耗少
在1Byte数据中的8个值中,如果超过一半的数值是0,那么GDDR5就会自动执行转位传输,把0变成1、1变成0,通过1个附加的DBI(数据总线转位值)来判定数据流是正位还是反位。GDDR5的这项技术是从GDDR4继承发展而来的。
DRAM在传输数据时,只有0会消耗电能,减少0的传输数量,既能保证信号质量,也能减少内部终结电阻和外部终结电路的功率消耗。GDDR5的地址总线也使用了类似的技术,通过额外的ABI通道来转位数据流,从而较少信号噪声,并降低功耗。
智能的可编程I/O控制接口:简化PCB设计和成本
GDDR5对I/O控制器做了很多改进,加入了全新的自动校准引擎,保证GDDR5显存颗粒更好的适应GPU显存控制器的需求,确保数据传输稳定可靠。
自动校准引擎可以监控电压和温度变化,通过校验数据输出驱动器导通电阻与ODT终结电阻值来作出补偿,数据、地址、指令终结电阻都可以被软件或驱动控制。
GDDR5的针脚更多,但布线更简洁
此外GDDR5还能支持时间延迟和信号强度调整,灵活的协调数据同步,以往通过“蛇形走线”平衡延迟的方法彻底成为历史,GDDR5没有这种顾虑,因此能极大的简化PCB布线和成本,并有利于冲击更高频率。
数据遮盖技术:减轻数据总线压力
&&& GDDR5的Burst
Length(对相邻存储单元连续进行数据传输的周期数)是8bit,也就是说GDDR5颗粒一次至少要传输256bit数据,但很多时候并不是所有的数据都需要被改写,导致无效的数据传输。
为此,GDDR5使用了一项数据遮盖技术,通过地址线传输保护信息,所有被保护的数据在传输过程中就不会被改写,只有暴露的数据才会被写入新的数据。如此以来,GDDR5的数据线压力减轻不少,功耗发热也得到进一步控制。
误差补偿技术:提高传输效率,避免灾难性错误
为了保证数据在高速传输过程中的有效性,GDDR5新增一项错误侦测与修正技术。GDDR5使用了成熟的CRC(循环冗余校验),通过DQ和DBI总线,实时检查错误,第一时间重新发送数据。
这项技术对于高频率传输数据尤为重要,它能有效的减少数据传输错误导致系统崩溃的概率,大幅减少了由超频或高温导致的一系列问题,而且能够一定程度上提升数据传输效率。
折叠模式:32bit颗粒当作16bit用
GDDR5作为高端显卡专用的显卡,只有32bit的颗粒。由于GDDR5拥有两条并行的数据总线,这就使得GDDR5的工作模式变得更加灵活,它既可以工作在32bit模式下也可以工作在16bit模式下。这样一个32bit显存控制器就可以控制两颗GDDR5显存,显存容量可以轻松翻倍。
其实,GDDR3/4都可以通过这种方式扩充显存容量,但原理则完全不同。此前必须GPU的显存控制器在设计时支持双Bank模式才能支持更多的显存颗粒。而现在,8颗GDDR5显存总计256bit可以直接被128bit的GPU使用,从而简化了显存控制器设计,HD4770就是很好的例子。
前我们分析过,TSOP封装的GDDR1还有gDDR2显存,其实在技术上与DDR1/2内存没有本质区别,高位宽(16bit)的内存颗粒可以直接当作显存使用。随着DDR3颗粒大量投产,成本接近DDR2,于是在DDR3内存取代DDR2的同时,也将顺便取代老旧的gDDR2。
● gDDR3:把内存颗粒改装成显存用
以目前的情况来看,DDR3比gDDR2频率高很多,但成本比GDDR3要低,所以gDDR2被取代是板上钉钉的事。AMD率先将DDR3使用在了显卡上,随后得到了业界的一致认可。
为了和DDR3内存颗粒区分,DRAM厂将其称为Graphics DDR3
SDRAM,简写为gDDR3,和DDR3内存颗粒一样都是8bit预取技术,单颗16bit,定位中低端显卡;而传统的GDDR3则是Graphics
GDDR3 SDRAM的简写,它和DDR2内存一样采用了4bit预取技术,单颗32bit,定位中高端显卡。
可以看出,在高端GDDR5将会取代GDDR3,而低端gDDR3将会取代gDDR2,中端则会出现三代共存的局面。虽然gDDR3单颗位宽只有GDDR3的一半,但存储密度却是GDDR3的两倍,而且在相同频率下(比如2000MHz),gDDR3的核心频率是GDDR3的一半,因此功耗发热要低很多。对于位宽不高的中低端显卡来说,gDDR3大容量、低成本、低功耗发热的特性简直相当完美!
上图()就是现代官方网站列出的gDDR3和GDDR3两种显存的规格参数表,注意它们的全称,是否有"G",真的是差之毫厘谬以千里。
SDR+DDR1/2/3和GDDR1/2/3/4/5全系列规格参数汇总:
● 显存引领DRAM发展,未来内存将以显存为蓝本开发
纵观近年来内存与显存的发展,就会发现显存的发展速度已经远远超越了内存,显存带宽几乎达到了内存带宽的10倍之多,而且这个差距还在不断的加大。目前三通道DDR3已经足够桌面CPU用好一阵子了,而GPU对显存带宽的渴求似乎是个永远都填不满的无底洞。
正因为如此,显存逐渐脱离了内存的发展轨迹,在经过几次并不成功的尝试之后,从内存的配角/附属品,开始走向了反客为主的道路。GDDR2提前DDR2近两年、GDDR4提前DDR3一年多,虽然都以失败而告终,但却为GDDR5的成功打下了坚实的基础。
在内存领域,如今DDR3才刚刚站稳脚跟,至少将统治PC两至三年,但DDR4的标准已经在积极制定当中,而其技术规格将会以GDDR5为蓝本——也就是说保持DDR3
8bit预取技术不变,改进I/O控制器,个中原因相信认真阅读了本文的朋友们应该知道吧。
gDDR3源于DDR3,技术特性上没有区别,主要在封装上面。gDDR3作为对显卡优化的版本,单颗16bit FBGA
96Ball封装;而DDR3多为单颗4/8bit,封装是78/82Ball。也有少数DDR3使用了16bit FBGA
96Ball封装,由于位宽太大仅用于特殊场合。
在前文的内存部分,关于内存颗粒的位宽、通道、Bank等做了一些介绍,这些技术参数对于显存同样适用,但显存也有自己的一套规格定义,下面就逐一介绍:
● 规格:16M&32Bit是什么意思?
当您浏览网站或者查看显卡规格时,往往都会看到类似“某某显卡使用了4颗16M&32Bit的GDDR3显存”这样的文字,这其中16M&32Bit就是该显存颗粒的主要规格,是国际统一的命名标准,可以到存储厂商官方网站上查到。
16M&32Bit中,16M表示显存存储单元的容量为16Mbit,32Bit是单颗显存的数据位宽,这种标称不容易理解,需要经过换算才能得到符合我们使用习惯的规格。
● 容量:单颗显存容量=存储单元容量&数据位宽/8
以最常见的16M&32bit
GDDR3显存为例,16&32/8=64MB,一颗显存就是64MB的容量,那么这块显卡用了4颗显存就组成了256MB。
很多人可能会纳闷上面的公式中为何要除以8,因为官方规格中的16M的单位是Megabit(兆位)而不是MegaByte(兆字节),它两之间的换算需要除以8。
● 速度:显存理论频率=1000/时钟周期&2
大家常说某某显卡采用了1.4ns颗粒,另一个显卡用了更快的1.2ns颗粒,超频更猛等等……这个1.2ns就是显存的时钟周期,同样的我们需要换算成更容易理解的数字。
套用以上公式,我们来算算主流规格显存的理论频率是多少:
2.0ns颗粒=&2=1000MHz=1.00GHz&&&
1.6ns颗粒=&2=1250MHz=1.25GHz&&&
1.4ns颗粒=&2=1429MHz≈1.40GHz&&&
1.2ns颗粒=&2=1667MHz≈1.65GHz&&&
1.1ns颗粒=&2=1818MHz≈1.80GHz&&&
1.0ns颗粒=&2=2000MHz=2.00GHz
0.8ns颗粒=&2=2500MHz=2.50GHz
为什么要乘以2,因为DDR系列存储颗粒属于双倍传输,在工作频率和数据位宽相同的情况下,显存带宽是SDRAM的2倍,因此大家习惯于在基础频率上乘2,超高的频率确实比较好看。
● 位宽:显存位宽=单颗显存数据位宽&显存数量
这个不难理解,比如显卡使用了4颗16M&32bit
GDDR3显存,那么位宽就是32bit&4=128bit。需要注意的是,并非所有情况下这个公式都成立,除了显存数量之外,GPU显存控制器的位宽决定了显卡位宽上限。
低端显卡核心拥有128Bit显存控制器,因此4颗GDDR3显存就能满足位宽需求,即便PCB上集成了8颗显存,显卡位宽依然是128bit。如果是中端显卡的话,8颗显存正好是256Bit,与核心相吻合。
● 带宽:显存带宽=显存位宽&显存工作频率/8
单纯看显存位宽意义并不大,最终影响显卡性能的其实是带宽。我们可以把带宽比作是马路的车行流量,显然马路越宽(显存位宽),车速越高(显存频率),最终的带宽就越高。
以GTX260为例,显存频率2GHz,位宽448bit,计算所得带宽就是112GB/s。除以8的原因还是因为bit和Byte之间的换算。
带宽是显存速度的最终衡量,有些显卡的显存频率高,但是位宽低,最典型的就是使用GDDR5显存的HD4870,位宽256bit但频率高达3600MHz,最终计算得带宽就是115GB/s,和GTX260相当。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。热门板块:
百科解释,DDR,DDR2,DDR3,DDR4详细介绍
百科解释,DDR,DDR2,DDR3,DDR4详细介绍
2998浏览 / 9回复
DDR显存  DDR显存分为两种,一种是大家习惯上的DDR,严格的说DDR应该叫DDR SDRAM。另外一种则是DDR SGRAM,此类显存应用较少、不多见。  DDR SDRAM  人们习惯称DDR SDRAM为DDR。DDR SDRAM是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR SDRAM是在SDRAM基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现 DDR内存的生产,可有效的降低成本。  SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据,因此称为双倍速率同步动态随机存储器。DDR内存可以在与SDRAM相同的总线频率下达到更高的数据传输率。  与SDRAM相比:DDR运用了更先进的同步电路,使指定地址、数据的输送和输出主要步骤既独立执行,又保持与CPU完全同步;DDR使用了DLL(Delay Locked Loop,延时锁定回路提供一个数据滤波信号)技术,当数据有效时,存储控制器可使用这个数据滤波信号来精确定位数据,每16次输出一次,并重新同步来自不同存储器模块的数据。DDL本质上不需要提高时钟频率就能加倍提高SDRAM的速度,它允许在时钟脉冲的上升沿和下降沿读出数据,因而其速度是标准 SDRA的两倍。DDR SDRAM是目前应用最为广泛的显存类型,90%以上的显卡都采用此类显存。  DDR SGRAM  DDR SGRAM是从SGRAM发展而来,同样也是在一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据。可以在不增加频率的情况下把数据传输率提高一倍。DDR SGRAM在性能上要强于DDR SDRAM,但其仍旧在成本上要高于DDR SDRAM,只在较少的产品上得到应用。而且其超频能力较弱,因其结构问题超频容易损坏。
DDR2显存  DDR2显存可以看作是DDR显存的一种升级和扩展,DDR2显存把DDR显存的“2bit Prefetch(2位预取)”技术升级为“4 bit Prefetch(4位预取)”机制,在相同的核心频率下其有效频率比DDR显存整整提高了一倍,在相同显存位宽的情况下,把显存带宽也整整提高了一倍,这对显卡的性能提升是非常有益的。从技术上讲,DDR2显存的DRAM核心可并行存取,在每次存取中处理4个数据而非DDR显存的2个数据,这样DDR2 显存便实现了在每个时钟周期处理4bit数据,比传统DDR显存处理的2bit数据提高了一倍。相比DDR显存,DDR2显存的另一个改进之处在于它采用 144Pin球形针脚的FBGA封装方式替代了传统的TSOP方式,工作电压也由2.5V降为1.8V。  由于DDR2显存提供了更高频率,性能相应得以提升,但也带来了高发热量的弊端。加之结构限制无法采用廉价的TSOP封装,不得不采用成本更高的BGA封装(DDR2的初期产能不足,成本问题更甚)。发热量高、价格昂贵成为采用DDR2显存显卡的通病,如率先采用DDR2显存的的GeForce FX Ultra系列显卡就是比较失败的产品。基于以上原因,DDR2并未在主流显卡上广泛应用。
DDR3显存  DDR3显存可以看作是DDR2的改进版,二者有很多相同之处,例如采用1.8V标准电压、主要采用144Pin球形针脚的FBGA封装方式。不过DDR3核心有所改进:DDR3显存采用0.11微米生产工艺,耗电量较DDR2明显降低。此外,DDR3显存采用了“Pseudo Open Drain”接口技术,只要电压合适,显示芯片可直接支持DDR3显存。当然,显存颗粒较长的延迟时间(CAS latency)一直是高频率显存的一大通病,DDR3也不例外,DDR3的CAS latency为5/6/7/8,相比之下DDR2为3/4/5。客观地说,DDR3相对于DDR2在技术上并无突飞猛进的进步,但DDR3的性能优势仍比较明显:  (1)功耗和发热量较小:吸取了DDR2的教训,在控制成本的基础上减小了能耗和发热量,使得DDR3更易于被用户和厂家接受。  (2)工作频率更高:由于能耗降低,DDR3可实现更高的工作频率,在一定程度弥补了延迟时间较长的缺点,同时还可作为显卡的卖点之一,这在搭配DDR3显存的显卡上已有所表现。  (3)降低显卡整体成本:DDR2显存颗粒规格多为4M X 32bit,搭配中高端显卡常用的128MB显存便需8颗。而DDR3显存规格多为8M X 32bit,单颗颗粒容量较大,4颗即可构成128MB显存。如此一来,显卡PCB面积可减小,成本得以有效控制,此外,颗粒数减少后,显存功耗也能进一步降低。  (4)通用性好:相对于DDR变更到DDR2,DDR3对DDR2的兼容性更好。由于针脚、封装等关键特性不变,搭配DDR2的显示核心和公版设计的显卡稍加修改便能采用DDR3显存,这对厂商降低成本大有好处。  目前,DDR3显存在新出的大多数中高端显卡上得到了广泛的应用。
DDR4  DDR4内存峰会  据介绍美国JEDEC将会在不久之后启动DDR4内存峰会,而这也标志着DDR4标准制定工作的展开。一般认为这样的会议召开之后新产品将会在3年左右的时间内上市,而这也意味着我们将可能在2011年的时候使用上DDR4内存,最快也有可能会提前到2010年。  JEDEC表示在7月份于美国召开的存储器大会MEMCON07SanJose上时就考虑过 DDR4内存要尽可能得继承DDR3内存的规格。使用Single-endedSignaling( 传统SE信号)信号方式则表示64-bit存储模块技术将会得到继承。不过据说在召开此次的DDR4峰会时,DDR4 内存不仅仅只有Single-endedSignaling方式,大会同时也推出了基于微分信号存储器标准的DDR4内存。  DDR4规格  因此DDR4内存将会拥有两种规格。其中使用Single-endedSignaling信号的DDR4内存其传输速率已经被确认为 1.6~3.2Gbps,而基于差分信号技术的DDR4内存其传输速率则将可以达到6.4Gbps。由于通过一个DRAM实现两种接口基本上是不可能的,因此DDR4内存将会同时存在基于传统SE信号和微分信号的两种规格产品。  根据多位半导体业界相关人员的介绍,DDR4内存将会是Single- endedSignaling( 传统SE信号)方式DifferentialSignaling( 差分信号技术 )方式并存。其中AMD公司的PhilHester先生也对此表示了确认。预计这两个标准将会推出不同的芯片产品,因此在DDR4内存时代我们将会看到两个互不兼容的内存产品
DDR3内存详细介绍!
  DDR3可以看作DDR2的改进版。与DDR2相比:& &a. 工作电压与频率:& & DDR3相比起DDR2有更低的工作电压, 从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR3目前最高能够可以达到1600Mhz的速度,目前最为快速的DDR2内存速度为800Mhz/1066Mhz。& & b. 逻辑Bank数量:& & DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了准备。& & c. 封装(Packages):& & DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。& & d. 突发长度(BL,Burst Length)& & 由于DDR3的预取为8bit,所以突发传输周期(BL,Burst Length)也固定为8,而对于DDR2和早期的DDR架构的系统,BL=4也是常用的,DDR3为此增加了一个4-bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。& & e. 寻址时序(Timing)& & 就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2至5之间,而DDR3则在5 至11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0至4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数――写入延迟(CWD),这一参数将根据具体的工作频率而定。& & 此外,DDR3内存还有部分DDR2内存所不具备的功能,正是这些,让DDR3内存的表现有了根本性的提高:& & a. 重置(Reset)& & 重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界已经很早以前就要求增这一功能,如今终于在DDR3身上实现。这一引脚将使 DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有的操作,并切换至最少量活动的状态,以节约电力。在Reset期间,DDR3内存将关闭内在的大部分功能,所以有数据接收与发送器都将关闭。所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。& & b. ZQ校准& & ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(ODCE,On-Die Calibration Engine)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令之后,将用相应的时钟周期(在加电与初始化之后用512个时钟周期,在退出自刷新操作后用256时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。& & c. 参考电压分成两个& & 对于内存系统工作非常重要的参考电压信号VREF,在DDR3系统中将分为两个信号。一个是为命令与地址信号服务的VREFCA,另一为数据总线服务的VREFDQ,它将有效的提高系统数据总线的信噪等级。& & d. 根据温度自动自刷新(SRT,Self-Refresh Temperature)& & 为了保证所保存的数据不丢失,DRAM必须定时进行刷新,DDR3也不例外。不过,为了最大的节省电力,DDR3采用了一种新型的自动自刷新设计(ASR,Automatic Self-Refresh)。当开始ASR之后,将通过一个内置于DRAM芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,消电就大,温度也随之升高。而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。不过DDR3的ASR是可选设计,并不见得市场上的DDR3内存都支持这一功能,因此还有一个附加的功能就是自刷新温度范围(SRT,Self-Refresh Temperature)。通过模式寄存器,可以选择两个温度范围,一个是普通的的温度范围(例如0℃至85℃),另一个是扩展温度范围,比如最高到 95℃。对于DRAM内部设定的这两种温度范围,DRAM将以恒定的频率和电流进行刷新操作。& & e. 局部自刷新(RASR,Partial Array Self-Refresh)& & 这是DDR3的一个可选项,通过这一功能,DDR3内存芯片可以只刷新部分逻辑Bank,而不是全部刷新,从而最大限度的减少因自刷新产生的电力消耗。这一点与移动型内存(Mobile DRAM)的设计很相似。& & f. 点对点连接(P2P,Point-to-Point)& & 这是为了提高系统性能而进行了重要改动,也是与DDR2系统的一个关键区别。在DDR3系统中,一个内存控制器将只与一个内存通道打交道,而且这个内存通道只能一个插槽。因此内存控制器与DDR3内存模组之间是点对点(P2P,Point-to-Point)的关系(单物理Bank的模组),或者是点对双点(P22P,Point-to-two-Point)的关系(双物理Bank的模组),从而大大减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。不过目前有关DDR3内存模组的标准制定工作刚开始,引脚设计还没有最终确定。& && & 此外,DDR3还在功耗管理,多用途寄存器方面有不少新的设计。
一、DDR3内存为业界而生  电脑配件不断地重复着升级换代的规律,当主流产品服役一定的周期后,下一代产品必将扮演着未来接班人的角色,不断地为PC注入新鲜血液,让PC保持着强劲的活力作为人类最亲密的计算及娱乐工具。DDR3内存与其说是为了满足PC硬件系统中CPU对内存带宽的要求,不如说是为了业界更新换代的自然规律而生,下面我们先来看看DDR3内存有了哪些新的特点。  ● 提升带宽是DDR3内存的核心使命  这一点无疑是DDR3最为突出的PC使命,简单地说,DDR3面世就是为了进一步地提升内存带宽,为FSB越来越高的CPU提供足够的匹配指标。DDR2 内存其频率需要可以达到1066MHz这样的极端频率,但它的良率及成本都不理想,这种玩家级的产品没法进入到市场主流。  ● 提升带宽是DDR3内存的核心使命  要用低成本切入到更高的频率的话,新一代的解决方案必将出台,这就是DDR3内存了。从技术指标上看,DDR3内存的起跑频率就已经是在1066MHz 了,尽管延时参数方面没法与DDR2内存相抗衡,但是将来推出的MHz产品的内存带宽肯定大幅度抛离DDR2内存,以DDR3 2000MHz为例,其带宽可以达到16GB/s(双通道内存方案则可以达到32GB/s的理论带宽值),所以将来DDR3内存肯定成为用户唯一的高带宽选择。  ● 小知识:DDR3内存提升频率的关键技术  其实DDR3内存提升有效频率的关键依然是旧招数,就是提高预取设计位数,这与DDR2采用的提升频率的方案是类似的。我们知道,DDR2的预取设计位数是4Bit,也就是说DRAM内核的频率只有接口频率的1/4,所以DDR2-800内存的核心工作频率为200MHz的,而DDR3内存的预取设计位数提升至8Bit,其DRAM内核的频率达到了接口频率的1/8,如此一来同样运行在200MHz核心工作频率的DRAM内存就可以达到1600MHz的等值频率,这种“翻倍”的效果在DDR3上依然非常有效。  ● 降低功耗为业界造福  如果说2006年是CPU双核元年的话,那么2007年则可以说是PC的功耗年,因为本年有太多关系功耗性能比的宣传,从环保角度去看,降低功耗对业界是有着实实在在的贡献的,全球的PC每年的耗电量相当惊人,即使是每台PC减低1W的幅度,其省电量都是非常可观的。  ● 降低功耗为业界造福  DDR3内存在达到高带宽的同时,其功耗反而可以降低,其核心工作电压从DDR2的1.8V降至1.5V,相关数据预测DDR3将比现时DDR2节省 30%的功耗,当然发热量我们也不需要担心。就带宽和功耗之间作个平衡,对比现有的DDR2-800产品,DDR3-800、的功耗比分别为0.72X、0.83X及0.95X,不但内存带宽大幅提升,功耗表现也比上代更好。  二、DDR3与DDR2有什么不同之处?  我们先来看一看技术规格对比表,从表中可以看到DDR3内存相对于DDR2内存,其实只是规格上的提高,并没有真正的全面换代的新架构。DDR1DDR2DDR3电压 VDD/VDDQ2.5V/2.5V1.8V/1.8V(+/-0.1) 1.5V/1.5V(+/-0.075)I/O接口SSTL_25SSTL_18SSTL_15数据传输率(Mbps)200~容量标准64M~1G256M~4G512M~8GMemory Latency(ns)15~~15CL值1.5/2/2.5/33/4/5/65/6/7/8预取设计(Bit)248逻辑Bank数量2/44/88/16突发长度2/4/84/88封装TSOPFBGAFBGA引脚标准184Pin DIMM240Pin DIMM240Pin DIMM  1、逻辑Bank数量DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了准备。  2、封装(Packages)DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。  3、突发长度(BL,Burst Length)由于DDR3的预取为8bit,所以突发传输周期(BL,Burst Length)也固定为8,而对于DDR2和早期的DDR架构的系统,BL=4也是常用的,DDR3为此增加了一个4-bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。  4、寻址时序(Timing)就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2至5之间,而DDR3则在5 至11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0至4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数――写入延迟(CWD),这一参数将根据具体的工作频率而定。  三、DDR3内存优势何在  DDR3除了拥有更高的内存带宽外,其实在延迟值方面也是有提升的。不少消费者均被CAS延迟值数值所误导,认为DDR3内存的延迟表现将不及DDR2。但相关专家指出这是完全错误的观念,要计算整个内存模块的延迟值,还需要把内存颗粒的工作频率计算在内。事实上,JEDEC规定DDR2-533的CL 4-4-4、DDR2-667的CL 5-5-5及DDR2-800的CL6-6-6,其内存延迟时间均为15ns。  延迟同样也有提升  CAS Latency(CL)是指内存需要经过多少个周期才能开始读写数据,从前面的DDR/DDR2/DDR3规格表我们可以知道,DDR3的CAS Latency(CL)将在5~8之间,相比现在DDR2的3~6又要高出很多。  目前DDR3-1066、DDR3-1333和DDR3-1600的CL值分别为7-7-7、8-8-8及9-9-9,把内存颗粒工作频率计算在内,其内存模块的延迟值应为13.125ns、12ns及11.25ns,相比DDR2内存模块提升了约25%,因此消费者以CAS数值当成内存模块的延迟值是不正确的。  四、首批上市的DDR3内存拥有哪些规格  ● 频率从1066MHz起跑  目前内存厂商规划中生产的型号包括了DDR3 800/1066MHz/00等,从目前的情况来看,DDR3 1066MHz频率与1333MHz频率这两种型号的市场需求量是相对较大的,而其良率方面也正在不断地提升,在性能上虽然没能大幅度抛离DDR2,但是拥有DDR3新一代内存的称号足以让其成为取代DDR2的有力武器。  ● 1G容量成为主流  而在容量方面,由于2007年上半年内存芯片价格体系整体下调过快,在容量方面目前主流型号已经是1G,所以更多的内存厂商把DDR3内存的起跑容量定为 1G,当然512M容量的型号也会上市,但肯定不会是主流型号,因为DDR3内存要在国内流行的话,至少也要推进至2008年,那时候1G容量已经是基本要求,大规模生产512M容量内存显然不是明智之举。  而在单条2G容量内存方面,由于Intel与AMD的下一代平台依然是支持目前流行的双通道内存方案,所以单条2G*2(总容量4G)容量内存方案乐观估计也要到2009年才有望开始流行,由于操作系统方面的限制,32位操作系统没法识别4G容量内存,所以内存厂商生产DDR3内存的主力型号不会出现在 2G容量身上,除非内存的供需关系真的完全倾斜令到2G容量内存跌破用户心理线,否则2G容量内存不会得到内存厂商的青睐。  ● DDR3主板已经发售  其实DDR3内存流行的决定性因素是主流主板的支持情况,只有当主流的主板都支持DDR3内存时,DDR3内存才能形成销售规模,其价格自然也慢慢地进入主流消费层次。当然,对于DDR3这种潮流的IT产品,最热衷推崇的还是业界大哥Intel,目前发布的下一代主板芯片组X38、P35、G33均支持 DDR3内存。  主板厂商方面,支持DDR3内存的主板也在最近频繁露面,像、、、Intel等都推出了自家的 DDR3内存主板。而AMD方面,由于集成内存控制器,所以无论是从DDR到DDR2,还是从DDR2到DDR3,其推进速度都是显得比Intel“慢半拍”。不过不管如何,AMD始终都是会跟随着业界大方向行动的,事实上AMD一直都是这样做。  ● DDR3价格注定从天价起步  任何新产品在进入市场初期都不会有什么平易近人的价格,从目前一些内存厂商所公布的价格来看,典型的DDR3 1066MHz 1G内存的价格要1500元以上。也就是说,要组建双通道DDR3 1G*2的方案就要花费至少3000元以上,这个价格对于目前欢天喜地的DDR2内存价格比较的话,无疑是天价。  当然,再高贵的新产品最终也是要走到普通市场的,DDR3内存要进入到主流市场,保守估计也要到2009年,那时候,白菜价的DDR3内存才有可能出现。
DDR=Double Data Rate双倍速内存  严格的说DDR应该叫DDR SDRAM,人们习惯称为DDR,部分初学者也常看到DDR SDRAM,就认为是SDRAM。DDR SDRAM是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。  SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据,因此称为双倍速率同步动态随机存储器。DDR内存可以在与SDRAM相同的总线频率下达到更高的数据传输率。  与SDRAM相比:DDR运用了更先进的同步电路,使指定地址、数据的输送和输出主要步骤既独立执行,又保持与CPU完全同步;DDR使用了DLL(Delay Locked Loop,延时锁定回路提供一个数据滤波信号)技术,当数据有效时,存储控制器可使用这个数据滤波信号来精确定位数据,每16次输出一次,并重新同步来自不同存储器模块的数据。DDR本质上不需要提高时钟频率就能加倍提高SDRAM的速度,它允许在时钟脉冲的上升沿和下降沿读出数据,因而其速度是标准SDRA的两倍。  从外形体积上DDR与SDRAM相比差别并不大,他们具有同样的尺寸和同样的针脚距离。但DDR为184针脚,比SDRAM多出了16个针脚,主要包含了新的控制、时钟、电源和接地等信号。DDR内存采用的是支持2.5V电压的SSTL2标准,而不是SDRAM使用的3.3V电压的LVTTL标准。  DDR内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两倍。  什么是 DDR1?  有时候大家将老的存储技术 DDR 称为 DDR1 ,使之与 DDR2 加以区分。尽管一般是使用 “DDR” ,但 DDR1 与 DDR 的含义相同。  什么是 DDR2?  DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达 667MHZ ),耗电量更低,散热性能更优良 .  DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。  DDR3与DDR2几个主要的不同之处 :  1.突发长度(Burst Length,BL)  由于DDR3的预取为8bit,所以突发传输周期(Burst Length,BL)也固定为8,而对于DDR2和早期的DDR架构系统,BL=4也是常用的,DDR3为此增加了一个4bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。  2.寻址时序(Timing)  就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2~5之间,而DDR3则在5~11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0~4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数――写入延迟(CWD),这一参数将根据具体的工作频率而定。
&& DDR2内存的频率  3.DDR3新增的重置(Reset)功能  重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界很早以前就要求增加这一功能,如今终于在DDR3上实现了。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有操作,并切换至最少量活动状态,以节约电力。  在Reset期间,DDR3内存将关闭内在的大部分功能,所有数据接收与发送器都将关闭,所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。  4.DDR3新增ZQ校准功能  ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(On-Die Calibration Engine,ODCE)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令后,将用相应的时钟周期(在加电与初始化之后用 512个时钟周期,在退出自刷新操作后用256个时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。  参考电压分成两个  在DDR3系统中,对于内存系统工作非常重要的参考电压信号VREF将分为两个信号,即为命令与地址信号服务的VREFCA和为数据总线服务的VREFDQ,这将有效地提高系统数据总线的信噪等级。  点对点连接(Point-to-Point,P2P)  这是为了提高系统性能而进行的重要改动,也是DDR3与DDR2的一个关键区别。在DDR3系统中,一个内存控制器只与一个内存通道打交道,而且这个内存通道只能有一个插槽,因此,内存控制器与DDR3内存模组之间是点对点(P2P)的关系(单物理Bank的模组),或者是点对双点(Point-to-two-Point,P22P)的关系(双物理Bank的模组),从而大大地减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。  面向64位构架的DDR3显然在频率和速度上拥有更多的优势,此外,由于DDR3所采用的根据温度自动自刷新、局部自刷新等其它一些功能,在功耗方面DDR3也要出色得多,因此,它可能首先受到移动设备的欢迎,就像最先迎接DDR2内存的不是台式机而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也是一片光明。目前Intel预计在明年第二季所推出的新芯片-熊湖(Bear Lake),其将支持DDR3规格,而AMD也预计同时在K9平台上支持DDR2及DDR3两种规格。  5.DDR4  据介绍美国JEDEC将会在不久之后启动DDR4内存峰会,而这也标志着DDR4标准制定工作的展开。一般认为这样的会议召开之后新产品将会在3年左右的时间内上市,而这也意味着我们将可能在2011年的时候使用上DDR4内存,最快也有可能会提前到2010年。  JEDEC表示在7月份于美国召开的存储器大会MEMCON07SanJose上时就考虑过DDR4内存要尽可能得继承DDR3内存的规格。使用Single-endedSignaling( 传统SE信号)信号方式则表示64-bit存储模块技术将会得到继承。不过据说在召开此次的DDR4峰会时,DDR4 内存不仅仅只有Single-endedSignaling方式,大会同时也推出了基于微分信号存储器标准的DDR4内存。  DDR4规格  因此DDR4内存将会拥有两种规格。其中使用Single-endedSignaling信号的DDR4内存其传输速率已经被确认为1.6~3.2Gbps,而基于差分信号技术的DDR4内存其传输速率则将可以达到6.4Gbps。由于通过一个DRAM实现两种接口基本上是不可能的,因此DDR4内存将会同时存在基于传统SE信号和微分信号的两种规格产品。  根据多位半导体业界相关人员的介绍,DDR4内存将会是Single-endedSignaling( 传统SE信号)方式DifferentialSignaling( 差分信号技术 )方式并存。其中AMD公司的PhilHester先生也对此表示了确认。预计这两个标准将会推出不同的芯片产品,因此在DDR4内存时代我们将会看到两个互不兼容的内存产品。  6.DDR5  新的绘图记忆体的承诺,较低的能量消耗量和数据传输在6 Gbps的每秒  我们只看到极少数的绘图卡使用gddr4记忆直至目前为止,但三星已就此案与下一代的gddr5记忆体,并声称它的样本已经发向了主要的图形处理器公司。  当然,三星并不是第一家公司开始采样gddr5 的记忆。双方Hynix和奇梦达还宣布了类似的零件在十一月,但三星的记忆已经进了一步提供了数据传输速率6gb/sec ,超过标准5gb/sec 。因此,三星,大胆声称它的产品'世界上速度最快的记忆体, '和说,它的'能够传输移动影像及相关数据,在24千兆字节每秒。  以及增加带宽, gddr5记忆体也比较低功耗的要求,三星公司声称其记忆体运作,只是1.5 。  三星是目前采样512MB的gddr5芯片( 16 MB × 32 ) ,和mueez迪恩,三星的市场营销主管绘图记忆体,他说,该记忆体'将使种图形硬体的表现将推动软件开发商提供了一个新台阶眼膨化游戏。不过,我们可能要等待一段时间之前, gddr5成为普遍。三星公司估计,该记忆体将成为'事实上的标准,在顶端表演细分市场'在2010年,当公司说,它将帐户为' 50 %以上的高年底PC图形市场。
郑重声明:以上内容非个人原创,但觉得有必要发表一下供大家学习,好的东西应该拿来分享

我要回帖

更多关于 怎么区分ddr2和ddr3 的文章

 

随机推荐