2poly4rubedo metal是什么啥

59Battery Handbook Chapter 35-第8页
上亿文档资料,等你来发现
59Battery Handbook Chapter 35-8
34.36CHAPTERTHIRTY-FOUR;34.4.2PolymerElectrolyte;Thepolymerelectrolytelit;Figure34.9showsaschemati;Theearlybatteriesusedpol;Thesolidpolymerelectroly;34.4.3LithiumBatteriesUs;Inthel
34.36CHAPTERTHIRTY-FOUR34.4.2PolymerElectrolyteCellsThepolymerelectrolytelithiumbatteriescontainallsolid-statecomponents:lithiumastheanodematerial,athinpolymer?lmasasolidelectrolyteandseparator,andatransitionmetalchalcogenideoroxide,orasulfur-basedpolymerasthecathodematerial.Thesefeaturesofferthepotentialforimprovedsafetybecauseofthereducedactivityoflithiumwiththesolidelectrolyte,?exibilityindesignasthecellcanbefabricatedinvarioussizesandshapes,andhighenergydensity.Figure34.9showsaschematiccrosssectionofasolidpolymerelectrolytecell.Thecathodeandelectrolytearecoatedontoacurrentcollectortoformathinsheet,calledthecathodelaminate.Thelithiummetalfoilisappliedtothecathodelaminatetoformalayeredstructure,withthesolidpolymerseparatingthelithiumfromthecathode.Thesecellsaredesignedinextremelythincomponentswithhighsurfaceareastominimizetheinternalresistanceandcompensateforthelowerconductivityofthepolymerelectrolyte.Thethick-nessdependsonthespeci?ccelldesignandrequiredcapacity.Athickerlaminatedeliversahighercapacityperunitareaofelectrode,butwithloweref?ciencyatthehighercurrentdrains.43Theearlybatteriesusedpolyethyleneoxide(PEO)-basedelectrolytescontainingalithiumsalt,whichhaveanappreciableconductivityatabout100?Cbutlowconductivityatroomtemperature.Laternewpolymericelectrolytematerials,suchasPEOcopolymers,PEOblends,plasticizedPEOelectrolytes,andgelledelectrolytes,withbetterconductivityweredeveloped.SomeofthecathodematerialsinvestigatedforthesebatteriesareTiS2,VOx,V2O5,LixCoO2andsulfur-basedpolymers.Thesolidpolymerelectrolyte(SPE)batteryhasbeenconsideredforawiderangeofapplications,fromsmallportableelectronicsuptoandincludingelectricvehicles.34.4.3LithiumBatteriesUsingPEO-basedElectrolytesInthelate1970s,polymerelectrolytematerialswereproposedforuseinsolid-statebatterydesigns.44Aconsiderabledevelopmentefforthasresultedinanumberofreviewarti-cles45C47describingthestatusofsuchbatteriesinsomedetail.Theuniqueaspectofthesebatteriesisthattheelectrolyteisasolid?exible?lmcomprisedofapolymermatrixandanionicsaltcomplexedintothematrix.Thin-?lmsolid-polymerelectrolytebatteriesofferthepossibilityofanintrinsicallysafebatterydesignincombinationwithgoodhigh-ratecapa-bility.Polyethyleneoxidewasthe?rstmaterialutilizedasthematrixmaterial.Initially,itwasnecessarytooperatethecellsatelevatedtemperatures(100?C)toobtainadequateconduc-tivities(10?3S/cm),butavarietyofpolymericelectrolytesthatmaybeusefulatnormalambienttemperaturesweresubsequentlydeveloped.Thispolymerelectrolytebatteryisbasedonthin-?lmcomponentsthatincorporatelargeareaelectrolyteandelectrodelayers.Agen-eralcellcanbeschematizedas:Lix?A?/Li?ion-conductor/Liz?B?whereLix?A?isametalliclithiumanodeoralow-voltagelithium-intercalationanode(neg-ativeelectrode),theLi?ionconductorisalithiumsalt-polymercomplex,andLiz?B?isahigh-voltagelithium-intercalationcathode(positiveelectrode).Usually,thepolymercom-ponentoftheelectrolytelayerisalsothebinderfortheelectrodelayers.Inaddition,theRECHARGEABLELITHIUMBATTERIES(AMBIENTTEMPERATURE)34.37polymercomponentmaybegelledbytheadditionoflowmolecularweight(liquid)solventstoenhanceitsionicconductivity.Suchabatterysystemshowstwomajoradvantageswithrespecttostandardbatteriesthatuseinertporousseparators:1.Theelectrodeandelectrolytelayersarelaminated(usuallybyheatingandpressingthelayers),thusallowingvariousbatteryshapeswithoutlossofcontact.2.Evenifalowmolecularweight(liquid)plasticizerisaddedtoobtainhighconductivityatambientandsub-ambienttemperatures,thereisnofreeliquidpresentinthebatterythuspreventinganyleakageproblems.ExamplesofthebatterysystemsunderdevelopmentoravailableonthemarketplaceareindicatedinTable34.16.Theycanbeconvenientlyclassi?edintothreecategories:1.Positiveandnegativeintercalationelectrodes(lithium-ion)withagelledpolymerelectro-lyte(PEO-based).2.Positiveandnegativeintercalationelectrodes(lithium-ion)withaporouspolymersepa-ratorlayer?lledwithaliquidelectrolyte(PVDF-based).3.Positiveintercalationelectrode-lithiumanode(lithium-metal)withadrypolymerelectro-lytelayer.The?rstandthesecondcategories,thelatterofwhich(PVDF-basedsystems)doesnotproperlybelongtotheclassofpolymerelectrolytebatteries,arecoveredinChap.35.Inthischapter,theattentionisfocusedonthelithiummetal,drypolymerelectrolytesystems.Thesearchforhighenergydensitybatteries,especiallyforelectricvehicleapplications,hasledtotheconsiderationoftheuseoflithiummetalanodes.Nootheranodecanattainthesameelectrochemicalperformanceintermsofspeci?cenergyasmetalliclithium.How-ever,safetyissuesaswellaspoorcyclelifeperformancehavepreventedthecommercialsuccessoflithium-metalbatterieswiththeexceptionofprimarybatteries.Atthepresenttime,therearethreemajorprogramsaimedatthedevelopmentoflithium-anode,dry-polymerelectrolytebatteriesforelectricvehicles(Table34.17).WithintheseR&Dprograms,sub-stantialsuccesseshavebeenobtainedintermsofcyclabilityofthelithium-polymerelectro-lyteinterface51aswellasthewholebatterysystem.50However,Argotech’sbatteryNPS-24V80(Table34.18)appearstobetheonlysystemclosetocommercialization.Thisbattery,designedfortelecommunicationapplications(especiallyforoutsideplants),isafall-outoftheEVbatterymoduledevelopedwithintheUSABCprogram.Figure34.21illustratestheinternaldesignofthelithiumpolymercell.Thecellismadebylaminating?vethinlayersincludinganinsulatinglayer,alithiumfoilanode,asolidpolymericelectrolyte,atransitionmetaloxidecathode(VOx)andacurrentcollector.Theunitcellismadebywindingthelaminated?lmintoajellyroll(asinFig.34.21)ora?atroll(preferredformultiplecellbatteryassembly)structure.Thesecellsarethenassembledinseriesandinparallelarrangementstoformmodulesofdifferentsizesandshapesfornumerousapplications.Asanexample,Fig.34.22illustratesthedesignofalithium-polymerbatterymoduleforelectricvehicleapplications.Unitlaminatedcellsarepackagedintoastackof?atcellstocreateamodule.Thecellscanbeconnectedinparalleland/orseriesarrayswithinasinglecontainertobuildthedesiredmodulecapacityandvoltage.Thepack-agingalsoprovidesthemechanical,electrical,andthermalcontrolsrequiredforoperation.Eachmoduleisafullyfunctionalbatterysystem,includingintelligentcontrolandmonitoringelectronicsthatinterfacewiththebatterypackcontroller.RECHARGEABLELITHIUMBATTERIES(AMBIENTTEMPERATURE)34.39TABLE34.17MajorLithiumMetalAnode,DryPolymerElectrolyte(PEO-based),BatteryTechnologyDevelopmentProjects(fromRef.50)SponsorUSABC(USA)Bollore′Tech.EDF(France)MICA-MURST(Italy)ProjectleadersIREQ-3M-ANLCEREMENEACathodeVOxVOx,LiyMnOxVOx,LiyMnOxApplicationEVEVEVStatus2.4kWhprototypesPrototypesScaling-upto1kWhprototypesTABLE34.18Speci?cationsofArgo-Tech’sBatteriesfromRef.49NPS-24V80NominalvoltageRatedcapacityRatedenergyMaximumdischargecurrentFloatvoltageEnergydensitySpeci?cenergyLengthWidthHeightVolumeWeightAmbientoperatingtemperatureStoragetemperatureFloatlifeat40?CCyclelifeat60?C(80%DOD)24V/Module2.65V/Cell80Ah(@C/8)1.9kWh(@C/8)20A27.9V/Module3.1V/Cell110WhL?197Whkg?mm251mm17.4dm319.9kg?40to65?C?40to65?COver10years200cyclesEVmodule20V119Ah(@C/3)2.4kWh@C/3)365AN/A220WhL?1155Whkg?1Applicationspeci?cApplicationspeci?cApplicationspeci?cca.11dm315.7kgN/AN/AN/A600cyclesFIGURE34.21Laminatedlithium-polymerelectrolytecellassembly.(FromtheProceedingsofEVS16,reprintedbypermissionofthepublisher,EVAAP.)34.40CHAPTERTHIRTY-FOURFIGURE34.22DesignofaLithiumPolymerBattery(LPB)moduleforEVapplications.Themoduleincludesanenclosurewhichprovidesmechanicalsupportandthermalinsulationalongwithcontrolhardwareandvehicleinterfaces.(FromtheProceedingsofEVS16,reprintedbypermissionofthepublisher,EVAAP.)Thespeci?cationgivenforthestationaryapplicationNPS-24V80batteryaregiveninTable34.18andcomparedwiththeparentEV-module.AtypicaldischargecurveisdepictedinFigure34.23.Thebatteryisabletodeliver80Ahcapacityata10Adischargerateina60?Ctemperatureenvironment.Theexcellentperformanceathighambienttemperatureisoneofthemajoradvantagesofthissystem.Theunitcellsoperateat40to60?C,anddonotcontainanyliquid:Thebatteryisdesignedtohavenodegradationinnon-ventilatedandwarmenvironments(forexample:telecommunicationcenters).Itcontainsnoliquid,thusitishermeticallysealed,anddry-outduringoperationandliquidleakageareimpossible,andthereforenomaintenanceisrequired.Inaddition,thebatteryshowsverygoodsafetychar-acteristics.Overchargingtestsshowednogasgeneration.53Oncemore,noliquidleakageispossibleevenwhenthemoduleisaccidentallycrushed.Finallyandmostimportant,waterimmersiontestsonentirecrushedcellsshowedonlyaveryslowreaction.包含各类专业文献、专业论文、生活休闲娱乐、高等教育、文学作品欣赏、行业资料、59Battery Handbook Chapter 35等内容。 
  TCPIP_Chapter 10 Transmi... 112页 2财富值 10国临-Chapter-14(综合) ... 30页 1财富值 Battery Handbook Chapter... 14页 5财富值 Chapter 10 of ...   Chapter 22-30 暂无评价 246页 5财富值 chapter 21-30 暂无评价 16页 免费 29-30 chapter 暂无评价 13页 2财富值 Battery Handbook Chapter... 35页 免费...   Chapter 31 Indicati... 25页 免费 Battery Handbook Chapter... 31页 免费 相变原理chapter 31 14页 1财富值 Chapter 31--Examples 暂无评价 18页 免费 ...   Battery Handbook Chapter... 37页 免费 Chapter 32 Subordination... 22页 5财富值 COMPANIES ORDINANCE (Cha... 10页 免费 Homework Chapter 32 暂无评价 4...   曼昆宏观CHAPTER 25 8页 1财富值 Chapter 25 Equipment 8页 免费 Battery Handbook Chapter... 46页 免费 Chapter 25 The Korean Wa... 22页 1财富值 厦大...   41页 5财富值 Battery Handbook Chapter... 23页 免费 自动插件机介绍 40页 免费 圆片级封装介绍(wafer lev... 46页 5财富值...   ashrae handbook( table of content)_城乡/园林规划_工程科技_专业...Systems and Equipment Handbook AIR-CONDITIONING AND HEATING SYSTEMS Chapter 1....上亿文档资料,等你来发现
CONTENTS;1.1;1.2;1.3;1.4OrganicLight-Emitting;1.4.1Dual-FunctionPolyme;1.4.2PolymerLight-Emitti;1.4.3PLEDwithStableCatho;1.4.4PLEDandPLECinSurfac;1.4.5OptocouplersMadewit;1.5Flat-P
1CONTENTS1.11.21.31.4OrganicLight-EmittingDevicesandTheirApplicationsforFlat-PanelDisplaysGangYuandJianWangIntroduction................................................................................................................ConjugatedPolymersinPLEDs.................................................................................PLEDStructures,Processes,andPerformance...........................................................NovelDevicesandNovelFunctionsinThin-FilmPolymerDevices..........................1.4.1Dual-FunctionPolymerDeviceandDisplayMatrices....................................1.4.2PolymerLight-EmittingElectrochemicalCells................................................1.4.3PLEDwithStableCathodeElectrode..............................................................1.4.4PLEDandPLECinSurfaceCellConfiguration.............................................1.4.5OptocouplersMadewithSemiconductingPolymers........................................1.5Flat-PanelDisplaysMadewithSolution-ProcessibleOrganicSemiconductors.........1.5.1SMOLEDsandPLEDsasEmitterElementsinFlat-PanelDisplays..............1.5.2PMOLEDDisplaysversusAMOLEDDisplays..............................................1.5.3MonochromeAMPLEDsMadewithSolution-ProcessiblePolymers.............1.5.4Full-ColorAMPLEDModules........................................................................1.5.5PerformanceSimulationforFull-ColorAMOLEDs.......................................1.5.6AMOLEDforGraphicandMotionPictureApplications...............................1.6SummaryandRemarks..............................................................................................Acknowledgment.................................................................................................................References...........................................................................................................................1.1INTRODUCTIONTheelectroluminescence(EL)phenomenonwasfirstdiscoveredinapieceofcarborundum(SiC)crystalbyH.J.Roundin1907[1].Commercialresearchintolight-emittingdiodes(LEDs)technologystartedinearly1962,whenNickHolonyakJr.createdthefirstinorganicLED[2,3].Workongalliumarsenidephosphide(GaAsP)ledtotheintroductionofthefirstcommerciallymass-produced655nmredLEDsin1968byHewlett-PackardandMonsanto.In1950s,BernanosefirstobservedELinorganicmaterialbyapplyingahigh-voltagealternatingcurrent(AC)fieldtocrystallinethinfilmsofacridineorangeandquinacrine[4,5].Thedirectcurrent(DC)drivenELcellusingsinglecrystalsofanthracenewasfirstdemonstratedbyPopeandhiscoworkersfollowingthediscoveryofLEDsmadewithIIICVcompoundsemiconductors[6].In1975,thefirstorganicelectroluminescence(OEL)devicesmadewithapolymerpolyvinylcarbazole(PVK)weredemonstrated[7].InearlyattemptstodeveloporganicELdevices,thedrivingvoltagewasontheorderof100Voraboveinordertoachieveasignificantlightoutput[8C10].Vincettetal.achievedanoperatingvoltagebelow30Vbyusingathermallydepositedthinfilmofanthracene[11].TheresearchfocusedmainlyintheacademicfielduntilDr.C.W.TangandhiscoworkersatKodakChemicalshowedforthefirsttimeefficientorganiclight-emittingdevicesinmultilayerconfigurationwithsignificantperformanceimprovement[12].Nowadays,smallmoleculeorganiclight-emittingdiodes(SMOLEDs)madebymeansofathermaldepositionprocesshavebeenusedforcom-mercial display products. Pioneer Corporation has commercialized OEL display panels forconsumerelectronicsapplications,suchascaraudiosystems,CD=MP3players,A=Vreceivers,etc.,since1999.OneoftherecentproductsfromPioneerElectronicsisanin-carCDplayerfeaturingablueOELdisplaymadeinpassivematrix(PM)configuration[13].KodakCompanyandSanyoElectricCompanyLimiteddemonstratedthefirstfull-color2.4-in.activematrix(AM)SMOLEDdisplaysin1999.Theirjointmanufacturingventure,SKDisplayCorporation,producedtheworld’sfirstAMSMOLEDdisplaysforaKodakdigitalcamera(ModelLS633)[14].Recently,SonyCorporationannouncedmassproductionofSMOLEDdisplaysforitsCLIEPEG-VZ90personalentertainmenthand-helddevices,startinginSeptember2004[15].Anothertypeoforganicsemiconductor,conjugatedpolymer,wasdiscoveredin1977byAlanJ.Heeger,AlanG.MacDiarmid,andHidekiShirakawa[16,17].Inadditiontothefocusonitsnovelphysicalandchemicalpropertiesinheavilydopedstates,greatattentionwaspaidtoitsintrinsicpropertiesintheundopedsemiconductingphase,itsnonlinearopticalproper-tiesunderphotoexcitation[18,19]anditsinterfacialbehaviorswithmetalcontacts.SchottkydiodesmadewithpolyacetylenefilmweredemonstratedinmetalCsemiconductorpolymerCmetalconfigurations[20,21].Theiroptoelectricandelectro-opticalpropertieswerestudied.Althoughsignificantphotosensitivitywasdemonstrated,theelectroluminescentpropertyofthissystemwasintrinsicallyweakduetoitselectronicstructure.Extensivestudiesofconjugatedpolymersintheearlyandmiddle1980sfocusedonsearchinganddevelopingnewmaterialswithsolutionprocessibility.Apopular,well-studiedsystemwasapolythiophenederivative,ofwhich poly(3-alkyl)thiophene (P3AT) was one (Figure 1.1). Solution-processed metal =P3AT =metalthin-filmdevicesweredemonstratedattheUniversityofCaliforniaatSantaBarbarain1987[22].Followingthefirstdemonstrationoflight-emittingdevicewithunsubstitutedpoly( p-phenylenevinylene) (PPV) (Figure 1.1) by R.H. Friend’s group at Cambridge University,[23]ahighefficientpolymerlight-emittingdiode(PLED)devicewasmadewithasolution-processiblepolymer,poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylenevinylene](MEH-PPV)(Figure 1.1), by Heeger’s group in Santa Barbara, California [24]. As discussed in laterchapters,thecurrentcommercializedsolublePPVderivativesarebasedonasynthesisapproachoriginallydevelopedbyFredWudl’sgroupinSantaBarbarain]andlatermodifiedbyUNIAXCorporationinthemid-1990sandAventisResearch&Technolo-giesGmbH(nowCovionOrganicSemiconductorsGmbH)inthelate1990s.SolublePPVderivativessynthesizedfollowingthisapproachnotonlyhavehighmolecularweights,butalsoshowexcellentsolubilityincommonorganicsolvents.Mostimportantly,thesematerialshaveintrinsicallylowchargedimpurity(typicallybelow1014percm3)andhighphotolumi-nescentefficiency(typicallyintherangeof20C60%)[25C28].PLEDsmadewithsuchPPVfilmsshowhighelectroluminescentefficiency,lowoperationvoltage,andlongdevicelifetime[29C31].DisplaysmadewithPPVemitterswerefirstcommercializedin2002byPhilips(Norelcoelectricrazor:Spectra8894XL).AlthoughtheenergygapinaPPVderivativecanbeincreasedbyreducingconjugationandplanarizationbetweenthephenylgroupandthevinylgroup(asobservedinPPVswithphenylgroupsattachingat2or5positionsorbothsites)[27,32,33],itisnotlargeenoughtoproducesaturatedbluecolorneededforfull-colordisplays.ConjugatedpolymerswithopticalPolyacetylene(PA)Polythiophene(PT)nPoly para-phenylenevinylene(PPV)nnOR1RPoly(3-alkyl)thiophene(P3AT)(R-methyl, butyl, etc.)Polypyrrole(PPy)Poly(2,5-dialkoxy)paraphenylenevinylene(e.g., MEH-PPV)R2OnnNnPoly para-phenylene(PPP)R2nPolyisothianaphthene(PITN)nLadder-typepolyparaphenylene(LPPP)R1R1Poly ethylenedioxythiophene(PEDOT)Polyparaphenylenesulphide(PPS)R2SnnAlkoxy-substitutedpoly para-phenylene vinylene(MEH-PPV)Polyheptadiyne(PHT)nnOPoly(3-hexyl) thiophene(P3HT)SnPolyaniline (PANI)NN..nnPolyfluorene (PFO) RRFIGURE1.1Molecularstructuresofpopularconjugatedpolymers.energygaps(&2.9eV)areneededforPLEDswithblueemission.Significanteffortshavebeenmadeonsearchinganddevelopingwideenergygappolymers(suchaspoly(p-phenyl)andtheirfunctionalderivatives)[34C46].Inadditiontoitsuseasmakingblueemitters,thesamebuildingblockscanalsobeutilizedformakingredandgreenemitters(asthehost)bycopolymerizingthemwithaproperemittergroup(astheguest)[47C49].Thered,green,andbluematerialsetsdevelopedbyseveralcompanies(includingCovionandDowChemical)areallsolubleincommonorganicsolventswithhighoptoelectricperformanceandgoodfilm-formingproperties[49,50].PLED-baseddisplaysareattractiveduetotheirprocessingadvantagesindevicemanufac-ture.Theorganicmaterialsusedaresolubleincommonorganicsolventsorinwater.Large-sized,uniform,andpinhole-freethinfilmscanbecastfromsolutionsatroomtemperaturebymeansofspincoatingorothercoatingtechniquescommonlyseeninprintingandpaintingindustries.Becauseofthelargeelongationatrupturecharacteristicofpolymers,theyareflexibleandcanbeeasilyfabricatedontorigidorflexiblesubstratesinflatorcurvedshapes.Solutionprocessingisalsopromisingforformingpatternedcolorpixelsinfull-colordisplays.DifferentELpolymerscanbedepositedontopredefinedlocationsbymeansofaprintingtechnique,suchasinkjetprinting[51,52],screenprinting[53,54],orphotolithographicpatterning[55].Full-colorPLEDdisplaysmadewithaninkjetprocessorlaser-inducedthermaltransferprocesshavedemon-stratedexcellentimagequalities[56,57].Section 1.2 gives a brief review of conjugated polymers in semiconducting and metallicphases. Section 1.3 discusses device architectures and their corresponding processes. Section1.4 introduces some novel devices and their functions in thin-film polymer devices. Section 1.5isdevotedtotechnicalmeritsofSMOLEDsandPLEDsusedasemitterelementsinflat-paneldisplays.1.2CONJUGATEDPOLYMERSINPLEDSConjugatedpolymersrepresentanovelclassofsemiconductorsthatcombinetheopticalandtheelectronicpropertiesofsemiconductorswiththeprocessingadvantagesandmechanicalpropertiesofpolymers.Themolecularstructuresofseveralpopularconjugatedpolymersareshown in Figure 1.1. Before the revolutionary discovery of conjugated polymers, polymerscienceandtechnologyhadfocusedonsaturatedpolymers,i.e.,conventionallynonconduc-tivepolymers(atermformacromoleculeswithrepeatstructuralunits).Insaturatedpolymers,thevalenceelectronsofthecarbonatomsinthemainchainarehybridizedinsp3configur-ation,andeachcarbonatomisbondedtofourotheratoms.Asaresult,theelectronicorbitalsarefullysaturated.Duetotheirelectronicstructures,saturatedpolymershavewideenergygapsandareelectricallyinsulating.Thefundamentaldifferencebetweenthesaturatedpolymersandtheconjugatedpolymersis the electronic configuration. Figure 1.2 compares the molecular and the electronic struc-turesofsaturated(nonconjugated)polyethyleneandconjugatedpolyacetylene.Inaconju-gatedpolymer,thecarbonorbitalsareinthesp2pzconfiguration,whichleadstooneunpairedelectron(thepelectron)percarbonatom.Aseachcarbonatomiscovalentlybondedtoonlythreeotheratoms,andpzorbitalsofsuccessivecarbonatomsalongthebackboneoverlap,thedelocalizedpbandsarethereforeformed.Asaresult,conjugatedpolymersexhibitsemicon-ductingormetallicproperties,dependingonwhetherthebandsarefilledorpartiallyfilled.Thenumberofpbandsisdeterminedbythenumberofatomswithintherepeatunit.InthecaseofPPV,astherepeatunitcontainseightcarbons,thepbandissplitintoeightsub-bands.Eachsub-bandcanholdonlytwoelectronsperatom,sothefourpsub-bandswiththelowestenergyarefilled,andthefourp*sub-bandswiththehighestenergyareempty.HCCCH(a)sp3 hybridization: tetrahedral symmetryHHHHHCHCHHHCHPolyethyleneHHCCCCCHHHHHPolyacetyleneH2(b)sppz hybridization: hexagonal + π bondFIGURE1.2Electronicandmolecularstructuresof(a)polyethyleneand(b)polyacetylene.The energy difference between the highest occupied p sub-band and the lowest unoccupied p*sub-band defines the p--- p energy gap Eg.One of the advantages of organic semiconductors is that their mechanical and processingproperties can be modified, retaining their electric and optical properties. For example, PPV$2.5 eV. It is insoluble in any organic solvent after conversionis a semiconductor with Egfrom its precursor to a conjugated form [23,58]. However, by attaching alkyl groups to the 2,5positions of its benzyl group, alkyl-PPV derivatives are formed. The alkyl-PPV derivativespossess similar energy band gap and luminescent emission profile as those of PPV, but aresoluble in most nonpolar organic solvents (such as xylene or toluene) and processible inconjugated form [59]. Another advantage of organic semiconductors is that the energy bandgap of a given system can be tuned, retaining its processing capability. For example, byreplacingthealkylgroupsofPPVderivativeswithalkoxygroupsonthe2and5positions(forexample, MEH-PPV, Figure 1.1), the energy band gap can be reduced from 2.5 to 2.1 eV.Figure 1.3 shows the absorption and electroluminescent spectra for a series of PPV deriva-tives.Theenergygapsareintherangeof2.5to1.9eV,providingaspreadof0.6eV.Theseengineeringflexibilitiesareespeciallypromisingforoptoelectricandelectro-opticdeviceapplications.Alongwiththechangeoftheenergybandgap,luminescentprofileandemissioncoloralsochange,asshowninFigure1.3b.Photonicdevicesareoftenclassifiedintothreecategories:lightsources(LEDs,diodelasers,etc.),photodetectors(photoconductors,photodiodes,etc.),andenergyconversiondevices(photovoltaicdevices,solarcells,etc.)[60].Mostofthephotonicphenomenaknowninconventionalinorganicsemiconductorshavebeenobservedinthesesemiconductorpolymers[29,61],includingluminescenceandphotosensitivity.Photoluminescence(PL)de-scribesthephenomenonoflightgenerationunderopticalradiation.Anincomingphotonwithenergylargerthanthebandgapexcitedanelectronfromthefilledpbandtotheunoccupiedp*bandtoformanelectronCholepair(exciton),whichsubsequentlyrecombinestoemitaphoton.Insemiconductorpolymersusedforlightemissionapplications,thephotoluminescentquantumefficiencyistypicallyinthe10C60%range.Photoconductivity包含各类专业文献、高等教育、幼儿教育、小学教育、各类资格考试、应用写作文书、中学教育、文学作品欣赏、DK等内容。 
 (2,0.001,100) y = -1 y = 10 y = 0....0.3689 + 3.9378i -5.0 - 4.... C语言上机实验报告5 暂无评价 2页 免费 MATLAB ...   jl 2页 1财富值 页 1财富值 正方形--JL 24页 2财富值 DK页 免费 封面C001 暂无评价 3页 免费喜欢此文档的还喜欢...  0.001 0.001 0.000 0.005 0.005 0.007 0.016 0.025 0.003 0.002 ...75
61 638.% 9...  A001 北京大学 A002 中国人民大学 A003 清华大学 ...6 31 19 9 17 语学院 A032 北京... B664 西安邮电大学 B845 广东工业大学 C121 南方...  2 本科一批院校 A001 北京大学 A002 中国人民大学...6
(中外合作) (中外...C121 南方医科大学 F301 宁波诺丁汉大学 F302 西...  我选 择增加了一个希捷 3T 三碟版: 希捷(Seagate)3TB ST00 转 ...记住端口号 3689 IP+端口号登陆管理界面。插件启动后会自动对媒体文件进行扫描。...  65.001 184.56 524.06 12 1.4 1.5 1.7623 1....1.6 1.4 2.2 3.4 4.8068 ...  1.6 1.4 2.2 3.4 4.8068 ...65.001 184.56 524.06 93.051 289.00 897.60 132.78 450.74 1530.1 ...  0. 27.23
0.4 3.907 34.92 1395 20...0.001x2 + 0.0144x + 0. D3 0.1 D4 0.08 动力因数D D...

我要回帖

更多关于 metal build 的文章

 

随机推荐