无所谓 杨坤DNF········

Precision corrections in the minimal supersymmetric standard model
PasswordRemember meSign in via your institutionSign in via your institution
Loading...
You have selected 1 citation for export.
RIS (for EndNote, ReferenceManager, ProCite)
Citation Only
Citation and Abstract
JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.
, 28 April 1997, Pages 3-67
Precision corrections in the minimal supersymmetric standard model
Opens overlay
Opens overlay
Opens overlay
Opens overlay
aStanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USAbDepartment of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
Check if you have access through your login credentials or your institution.
Remember me
In this paper we compute one-loop corrections to masses and couplings in the minimal supersymmetric standard model. We present explicit formulae for the complete corrections and a set of compact approximations which hold over the unified parameter space associated with radiative electroweak symmetry breaking. We illustrate the importance of the corrections and the accuracy of our approximations by scanning over the parameter space. We calculate the supersymmetric one-loop corrections to the W-boson mass, the effective weak mixing angle, and the quark and lepton masses, and discuss implications for gauge and Yukawa coupling unification. We also compute the one-loop corrections to the entire superpartner and Higgs-boson mass spectrum. We find significant corrections over much of the parameter space, and illustrate that our approximations are good to O(1%) for many of the superparticle masses.
Grand unification
Remember meAn Approximation Algorithm for the Disjoint Paths Problem in Even-Degree Planar Graphs
Jon Kleinberg
Published in:
&&Proceeding
FOCS '05 Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
IEEE Computer Society Washington, DC, USA
2005 Article
&&Downloads (6 Weeks): 0
&&Downloads (12 Months): 0
&&Downloads (cumulative): 0
&&Citation Count: 13
powered by
Tools and Resources
(no tabs) **Javascript is not enabled and is required for the "tabbed view" or switch to the **
Advertisements
Powered by
Did you know the ACM DL App is now available?
Did you know your Organization can subscribe to the ACM Digital Library?
The ACM Guide to Computing Literature
Export Formats
Save to BinderAll papers
Help pages
Full-text links:
Current browse context:
&| &| Change to browse by:
References & Citations
Bookmark ()
Classification of simple quartics up to equisingular deformation
Abstract: We study complex spatial quartic surfaces with simple singularities up to
equis as a first step, give a complete equisingular
deformation classification of the so-called non-special simple quartic
Algebraic Geometry (math.AG); Geometric Topology (math.GT)
MSC&classes:
Primary: 14J28, Secondary 14J10, 14J17
[math.AG] for this version)
Submission history
From: Çisem G&#neş Aktaş []
[v1] Fri, 21 Aug :06 GMTDendriform equations
PasswordRemember meSign in via your institutionSign in via your institution
Loading...
You have selected 1 citation for export.
RIS (for EndNote, ReferenceManager, ProCite)
Citation Only
Citation and Abstract
JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.
, 1 December 2009, Pages
Computational Algebra
Dendriform equations
Opens overlay
Opens overlay
aLaboratoire MIA, Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse, FrancebUniversité Blaise Pascal, C.N.R.S.-UMR
Aubière, France
Communicated by Jean-Yves Thibon
Under an Elsevier
Open Archive
We investigate solutions for a particular class of linear equations in dendriform algebras. Motivations as well as several applications are provided. The latter follow naturally from the intimate link between dendriform algebras and Rota–Baxter operators, e.g. the Riemann integral map or Jackson's q-integral.
Planar rooted trees
A. Agrachev, R. Gamkrelidze
Chronological algebras and nonstationary vector fields
J. Sov. Math., 17 (1) (1981), pp.
Prepoisson algebras
Lett. Math. Phys., 54 (4) (2000), pp. 263–277
Infinitesimal bialgebras, pre-Lie and dendriform algebras
Hopf Algebras, Lect. Notes Pure Appl. Math., vol. 237, Dekker, New York (2004), pp. 1–33
F.V. Atkinson
Some aspects of Baxter's functional equation
J. Math. Anal. Appl., 7 (1963), pp. 1–30
An analytic problem whose solution follows from a simple algebraic identity
Pacific J. Math., 10 (1960), pp. 731–742
S. Blanes, F. Casas, J.A. Oteo, J. Ros
Magnus expansion: Mathematical study and physical applications
Phys. Rep., 470 (2009), pp. 151–238
S. Blanes, F. Casas, J.A. Oteo, J. Ros
Magnus and Fer expansions for matrix differential equations: The convergence problem
J. Phys. A, 31 (1998), pp. 259–268
J. Cari?ena, K. Ebrahimi-Fard, H. Figueroa, J.M. Gracia-Bondía
Hopf algebras in dynamical systems theory
Int. J. Geom. Methods Mod. Phys., 4 (4) (2007), pp. 577–646
F. Casas, A. Iserles
Explicit Magnus expansion for nonlinear equations
J. Phys. A, 39 (2006), pp.
F. Chapoton, M. Livernet
Pre-Lie algebras and the rooted trees operad
Int. Math. Res. Not., 8 (2001), pp. 395–408
F. Chapoton
Un théorème de Cartier-Milnor-Moore-Quillen pour les algèbres dendriformes et les algèbres braces
J. Pure Appl. Algebra, 168 (2002), pp. 1–18
F. Chapoton
The anticyclic operad of moulds
Int. Math. Res. Not., 20 (2007)
F. Chapoton
Operads and algebraic combinatorics on trees
Sem. Lothar. Combin., 58 (2008) Article B58c
F. Chapoton, F. Hivert, J.-C. Novelli, J.-Y. Thibon
An operational calculus for the Mould operad
Int. Math. Res. Not., 9 (2008)
E. Deutsch
Ordered trees with prescribed root degrees, node degrees, and branch lengths
Discrete Math., 282 (2004), pp. 89–94
K. Ebrahimi-Fard
Loday-type algebras and the Rota–Baxter relation
Lett. Math. Phys., 61 (2002), pp. 139–147
K. Ebrahimi-Fard, L. Guo
Free Rota–Baxter algebras and rooted trees
J. Algebra Appl., 7 (2) (2008), pp. 1–28
K. Ebrahimi-Fard, D. Manchon
A Magnus- and Fer-type formula in dendriform algebras
Found. Comput. Math., 9 (3) (2009), pp. 295–316
K. Ebrahimi-Fard, L. Guo, D. Manchon
Birkhoff type decompositions and the Baker–Campbell–Hausdorff recursion
Comm. Math. Phys., 267 (2006), pp. 821–845
K. Ebrahimi-Fard, J.M. Gracia-Bondía, F. Patras
A Lie theoretic approach to renormalization
Comm. Math. Phys., 276 (2007), pp. 519–549
K. Ebrahimi-Fard, J.M. Gracia-Bondía, F. Patras
Rota–Baxter algebras and new combinatorial identities
Lett. Math. Phys., 81 (2007), pp. 61–75
K. Ebrahimi-Fard, D. Manchon, F. Patras
A Bohnenblust–Spitzer identity for noncommutative Rota–Baxter algebras solves Bogoliubov's counterterm recursion
J. Noncommut. Geom., 3 (2) (2009), pp. 181–222
K. Ebrahimi-Fard, D. Manchon, F. Patras
New identities in dendriform algebras
J. Algebra, 320 (2008), pp. 708–727
J. Ecalle, Les fonctions résurgentes, Tomes I, II, et III, Publ. Math. d'Orsay
Singularités non abordables par la géométrie
Ann. Inst. Fourier (Grenoble), 42 (1–2) (1992), pp. 73–164
Résolution de l'equation matricielle U˙=pU par produit infini d'exponentielles matricielles
Bull. Classe des Sci. Acad. Roy. Belg., 44 (1958), pp. 818–829
I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh, J.-Y. Thibon
Noncommutative symmetric functions
Adv. Math., 112 (1995), pp. 218–348
A. Iserles
Solving linear differential equations by exponentials of iterated commutators
Numer. Math., 45 (1984), pp. 183–199
A. Iserles
A Magnus expansion for the equation Y′=AY-YB
J. Comput. Math., 19 (2001), pp. 15–26
A. Iserles
Expansions that grow on trees
Notices Amer. Math. Soc., 49 (2002), pp. 430–440
A. Iserles, H.Z. Munthe-Kaas, S.P. N?rsett, A. Zanna
Lie-group methods
Acta Numer., 9 (2000), pp. 215–365
A. Iserles, S.P. N?rsett
On the solution of linear differential equations in Lie groups
,in: C.J. Budd, A. Iserles (Eds.), Geometric Integration: Numerical Solution of Differential Equations on Manifolds, Philos. Trans. R. Soc. A, vol. 357, London Mathematical Society (1999), pp. 983–1020
S. Klarsfeld, J.A. Oteo
Recursive generation of higher-order terms in the Magnus expansion
Phys. Rev. A, 39 (1989), pp.
J.-L. Loday
Cup-product for Leibniz cohomology and dual Leibniz algebras
Math. Scand., 77 (2) (1995), pp. 189–196
J.-L. Loday
Dialgebras
Lecture Notes in Math., vol. 1763, Springer, Berlin (2001), pp. 7–66
J.-L. Loday, M. Ronco
Hopf algebra of the planar binary trees
Adv. Math., 139 (1998), pp. 293–309
J.-L. Loday, M. Ronco
Trialgebras and families of polytopes
Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI (2004), pp. 369–398
On the exponential solution of differential equations for a linear operator
Comm. Pure Appl. Math., 7 (1954), pp. 649–673
B. Mielnik, J. Plebański
Combinatorial approach to Baker–Campbell–Hausdorff exponents
Ann. Inst. H. Poincaré A, XII (1970), pp. 215–254
J.A. Oteo, J. Ros
From time-ordered products to Magnus expansion
J. Math. Phys., 41 (2000), pp.
F. Patras, C. Reutenauer
On Dynkin and Klyachko idempotents in graded bialgebras
Adv. in Appl. Math., 28 (2002), pp. 560–579
Primitive elements in a free dendriform algebra
Contemp. Math., vol. 207 (2000), pp. 245–263
Eulerian idempotents and Milnor–Moore theorem for certain non-commutative Hopf algebras
J. Algebra, 254 (2002), pp. 152–172
G.-C. Rota
Baxter algebras and combinatorial identities, I, II
Bull. Amer. Math. Soc., 75 (1969), pp. 325–329Bull. Amer. Math. Soc., 75 (1969), pp. 330–334
N.J.A. Sloane
The on-line encyclopedia of integer sequences
M.P. Schützenberger, Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil–Jacotin Pisot (Algèbre et théorie des nombres), Paris, Année 1958/59
R.S. Strichartz
The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations
J. Funct. Anal., 72 (1987), pp. 320–345
Die kombinatorische L?sung einer Operator-Gleichung
Z. Wahrscheinlichkeitstheorie, 2 (1963), pp. 122–134
R.M. Wilcox
Exponential operators and parameter differentiation in quantum physics
J. Math. Phys., 8 (1967), pp. 962–982
A. Zanna, The method of iterated commutators for ordinary differential equations on Lie groups, Technical Report 1996/NA12, Department of Applied Mathematics and Theoretical Physics, University of Cambridge
Remember me

我要回帖

更多关于 无所谓 杨坤 的文章

 

随机推荐