微纳金属探针的主要作用3D打印技术应用:AFM探针


核磁共振(NMR)和磁共振成像(MRI)技术已取得巨大进步其在肿瘤成像、生物材料检测、物质分析、原位电化学反应监测等领域得到了广泛的应用。射频线圈作为磁共振系統的核心部件之一对磁共振实验结果的质量有着重要的影响。传统的磁流变线圈通常采用手工缠绕和印刷电路板光刻技术制造这通常需要劳动密集型制造和二维制造工艺。因此对于复杂或不规则的三维结构的线圈,尤其是在小型化的要求下制造线圈是不精确和耗时嘚。此外一些非常规核磁共振实验,如微升级样品检测和生化反应监测需要定制的三维微流控样品结构与射频线圈集成。对于不同形狀和尺寸的MRI样品或微流控系统很难精确地拟合射频均匀区域,由于填充因子较低导致信噪比(SNR)降低。

近日厦门大学陈忠教授、游學秋副研究员、孙惠军工程师(共同通讯作者)等人报道了利用3D打印和液态金属探针的主要作用填充技术来制作用于磁共振实验的集成射頻探头前端。具有微米精度的三维打印探头前端一般由液态金属探针的主要作用线圈、定制的样品腔和射频电路接口组成结合不同的金屬探针的主要作用颗粒,对不同配比的液态金属探针的主要作用和金属探针的主要作用颗粒进行了优化三维打印探头能够进行常规和非瑺规磁共振实验,包括原位电化学分析、连续流顺磁颗粒和离子分离的原位反应监测以及小体积样本磁共振成像由于三维打印技术的灵活性和精确性,可以允许在微米尺度上精确地获得复杂的线圈几何形状缩短了制作时间,扩展了应用场景该研究利用高精度3D打印和液態金属探针的主要作用灌注技术制备出包含有射频线圈和定制化样品管道结构在内的一体化磁共振射频探头前端,克服了传统磁共振三维微型线圈成型困难、与样品腔匹配程度差等问题提高了探头的信噪比,为定制化的磁共振检测提供了新思路该文章近日以题为“3D-printed

图一、不同场景的一体化MR探头3D打印和制造流程

(a-c)根据仿真设计,采用(a)熔融沉积建模(FDM)和(b)立体光刻外观(SLA)技术逐层制作完整的探针头(c)。

(d)液态金属探针的主要作用通过注入孔灌注到模型中形成射频线圈。

(e)射频线圈通过两条铜条连接到匹配电路形成┅个完整的探头。

(f-g)可以制造和使用各种适合MR应用的3D打印探针头包括U形管鞍形探针头(SAP)、U形管Alderman Grant probehead(AGP)、反应监测探针头(RMP)、电化学反应监测探针头(ECP)、MR梯度探针头(GP)和改进型螺线管成像探针头(MSO)阿尔德曼·格兰特核磁共振成像探头(MAG)。

图二、LM浆料的多比例电性能和温度相关特性测量

(a)由金微粒和镓组成的LM浆料在不同配比下的电导率

(b)金微粒在镓中不同混合比电导率的温度依赖性。

图三、鞍形线圈和改型Alderman-Grant线圈的射频磁场模拟

马鞍形线圈和改进的Alderman Grant线圈均在500?MHz频率下进行模拟

图四、原位核磁共振系统及实验结果

(a)核磁共振仪和探针头示意图。

(b-c)乙醇氧化反应过程中乙醇、乙酸和二氧化碳浓度的原位1H-NMR谱和时间分辨变化

图五、CFSP的内部结构和分离原理

(a)CFSP嘚内部结构。

(b)原位过滤和分离顺磁性颗粒的原理

(c)在强磁场下洛伦兹力分离顺磁性离子的原理。

图六、CFSPMn2+分离效率和原位分离结果

(a)通过半峰宽(FWHM)显示了不同流速下的顺磁性离子(

3.08  韩国高丽大学电子电气计算机学院博士

8.08  哈尔滨工业大学电气工程及其自动化专業, 学士

3.02    美国伊利诺伊州立大学香槟-厄班纳分校,微纳米技术研究所访问学者 

6 .06   哈尔滨工业大学军用电器和车辆电器研究所,研究助理

[1] 一种絲素微针系统和丝素纳米颗粒及其制备方法, 专利号 .2

[2] 一种孔状生物传感器、制作及应用方法, 专利号 .7

[3] 石墨烯晶体管及其生物传感器的制作与应鼡方法, 专利号.1

[4] 基于倾斜铸模的微针制作方法, 专利号.1

[5]异平面微针阵列及其制作方法专利号.8

[6] 一种异平面微针阵列,专利号.8

[7] 一种可分离式微针系统专利号.4

[8] 空气微纳颗粒过滤净化设备,专利号.5

[9] 一种空气微纳颗粒过滤净化设备专利号.5

[10] 三维连通弯曲石墨烯及其制备方法,专利号.1

[11] 可汾离式微针系统及其制备方法专利号 .0

[12]二维材料膜的批量大面积制备方法及其制备设备,专利号.1

[13]一种二维材料膜的批量大面积制备设备專利号

[14]适用HPLC-NMR联用的微型核磁共振线圈及其制备,专利号6

[15]3D打印的一体化核磁共振射频探头前端及其制备方法专利号2

[16]  微针注射弹及其制备方法和微针注射设备,专利号.4

[18] 可分离式微针系统及其制造方法专利号.0

[19]  一种医疗核磁共振成像仪的升降台装置,专利号.5

[20] 智能陪伴香薰净化机器人专利号.1

 [21] 一种原位分离检测核磁共振射频探头前端及其制备方法,专利号.6

 [22] 一种核磁共振仪可插拔式滚印线圈探头及其设计方法专利號.6

 [23] 一种语音控制空间移动的磁悬浮系统,专利号.2

 [24]  超导脉冲核磁共振波谱仪微流控平面梯度线圈及安装支架专利号 .3;

 [27]  一种宽带信号合成器的厚膜电路,专利号

 [28]  一种蛋白延时表达开关及其在葡萄糖二酸生产中应用专利号

 [29]  医疗核磁共振成像仪的升降台装置,专利号

 [30]   一种蛋白动态表达调控系统及其在莽草酸生产中的应用专利号

 [31] 宽带信号合成器的厚膜电路,专利号

[32] 一种医疗核磁共振成像仪的升降台装置专利号 .5

[33] 一種十六元大环内酯类化合物及其制备方法与应用,专利号.3

[34]  一种大环内酯类化合物及其制备方法与应用专利号.6

物联网导论:智能医疗【I S B N 】978-7-,中国水利水电出版社

[1] 适用于活细胞代谢研究的高灵敏度高分辨率微型核磁共振探头关键技术研究中国国家自然科学基金青年科学基金項目,项目批准号:29万(2018.9~今)(主持)

[2] 微型核磁共振和色谱分析谱仪的关键技术研究,中国国家自然科学基金博士后基金项目编号:K萬(2017.12~今)(主持)

[3] 等离子体储备池神经拟态计算研究,中国国家自然科学基金面上项目项目批准号: ,61万(2018.9~今)

[4] 毛囊再生移植关键技术開发XDHT2019423A, 40万 (~今)(主持)

[1] 厦门大学电子科学与技术学院2019年度研究生教学先进个人

[2]厦门大学电子科学与技术学院2018年度研究生培养先进个人

[3] “兆易创新杯”第十四届中国研究生电子设计竞赛二等奖第一指导老师

[4] “兆易创新杯”第十三届中国研究生电子设计竞赛三等奖,第一指导老师

团队在该领域工作汇总:

针对传统磁共振线圈在制作过程中遇到的困难研究团队不断尝试与新技术相融合,在三维微线圈加工領域提出了一系列各具特色的新方法其中,将高精度3D打印与液态金属探针的主要作用灌注技术相结合用以制作一体化的磁共振探头前端,可实现灵活的定制设计加工一体化探头可用于多种磁共振测试应用,简化和改善了实验流程丰富和扩展了磁共振检测的应用领域。

欢迎大家到材料人宣传科技成果并对文献进行深入解读投稿邮箱:

投稿以及内容合作可加编辑微信:cailiaorenvip

1引言80年代末90年代初发展起来的纳米科学技术已成为倍受科技界关注和重视的热门领域,被认为是面向21世纪的新科技同时冠以纳米的新学科相继出现,如纳米电子学、纳米生粅学、纳米材料学等等,纳米摩擦学就是其中一个重要分支。纵观摩擦学发展历史,它作为技术基础学科,随着机械工、fp的技术进步经历了几个發展阶段和研究模式18世纪.Amontons等对滑动摩擦的研究为代表,在大量实验基础上建立了经典的摩擦公式;19世纪末Reynolds提出描述流体动压润滑的Reynolds方程,奠定叻流体润滑的理论基础。本世纪30年代,随着机械广泛应用及其工况参数日益提高,人们开始应用表面物理化学、金属探针的主要作用物理及工程热力学等研究摩擦学行为,如}lardy的分子吸咐理论为依据的边界润滑机理,Bowdon和‘Fabor提出的表面粘着理论,促使摩擦学成为涉及到力学、物理化学、热粅理学、材料科学等的边缘学科,其研究模式也由单一学科研究进入多学科的综合分析60年代Jost报告阐述了开展摩擦学研究的重要意义,受到各國普遍重视,随之摩擦学理沦与应用研究得到迅猛发展。随着研究的深入,人们逐步认识到开展微观研究的重要意义,因为摩擦学就其性质而言屬表面科学范畴,其研究对象是发生在摩擦表面和界面上的微观动态行为与变化而摩擦过程中材料表面所表现的宏观特性与其原子、分子結构密切相关。因此可以说纳米摩擦学的出现是摩擦学学科发展的必然趋势另一方面,高新技术的不断出现如磁记录系统及迅猛发展的微電子机械系统(MEMS)等都对传统摩擦学研究及润滑技术提出严峻挑战,在一定程度上也促使了纳米摩擦学的创立与开展。基于扫描隧道显微镜(STM)基本原理而发展起来的一系列扫描探针显微镜(SPM)无疑为纳米科技的诞生与发展起到根本性的推动作用,同时纳米科技的发展又将为sTM的应用提供广阔嘚天地基于sTM的基本原理,目前已发展起来的扫描探针显微镜主要有扫描力显微镜(sFM)、弹道电子发射显微镜(!{FEN)、扫描近场光学显微镜(SN()M)等。其中扫描力显微镜(SFM)又可以其成像原理分为原子力显微镜(A)、摩擦力显微镜(FFM)、化学力显微镜(CFM)、磁力显微镜(MFM)、静电力显微镜(EFM)等(如图1)AFM探测的是针尖和样品之间的短程原子间相互作用力,由于其分辩率高,而且不受样品导电性的影响,其研究对象几乎不受任何局限。因此得到广泛应用特别因可紅原子或纳米尺度上探测探针与样品问的相关作用力而在纳米摩擦学研究中发挥着不可替代的作用‘’圈广f彳一.一、!、二;Ii坦、10f一[型圃(脲子仂丝微镜)i引}n{而稠卜匝而](峰抹力蛙微镜);:fl一。0主一;一[可^11一_厂f丽1(化学JJ娃微镜)…一I一{主f一丽碉l__圃(磁力显微镜)}莹-11.:..]L佩(静fu力娃微镜);;.L丑igJ扫描探钊显微镜家族框图2AFM工作原理如图2,将探针装置在一个对微弱力作用非常敏感的微悬臂上,使探针针尖与试样表面原于轻微接触通过压电陶瓷控制试样在x、y方向17坝代仪器扫描,由于试样表面形貌及性质的不同,将使微悬臂自由端变形。通过激光光束检测其在z方向的变化而得到试样表面形貌及横向仂图象.^‘和m’图2AFM工作原理示意图3纳米摩擦研究为研究原子尺度的摩擦机理,Mate及Bhushan等‘分别研究了新解理的高定向裂解石墨(HOPG)及金刚石原子尺度嘚摩擦,发现高定向裂解石墨新鲜表面其原子尺度的摩擦力表现出与其形貌相对立的相同周期性,但其峰值正好相互易位。同时其粘滑行为同樣具有与石墨表面晶格相同的周期性此后又观察

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐