今天在家在家就一直整理东西西时,翻出了20年前的飘柔洗发水瓶子(空瓶子),值得收藏吗

版权声明:本文为博主原创文章遵循 版权协议,转载请附上原文出处链接和本声明

五一宅在家学点啥?全新思科sp ccie认证-首推思科服务提供商SPCOR课程轻松搞定网工前沿新技术

服务提供商网络核心技术,实施和操作思科服务提供商网络核心技术v1.0(SPCOR 350-501)是与CCNP和CCIE服务提供商相关的认证课程

该课程要求掌握服务提供商网络的相关知识。包括核心架构、服务、网络、自动化、服务质量、安全性和网络保障等技术

19年末因突发的新冠疫情,不论是学生還是职场人员生活和工作都受到了很大的影响目前国内的形势转好,很多城市也都逐渐展开复工、复学的安排可不知不觉,2020年的前四個月也就这么悄然流逝了……

原本在2019年底制定的新年学习工作目标可能也都被搁置了随着国内疫情的缓解,大家也陆续回归到正常的生活当中新的一年的学习计划也不能落下。

1.1 服务提供商架构

1.3 服务提供商虚拟化

d 企业和SP环境之间的信任边界

a 控制平面保护技术(LPTS和CoPP)

d LDP安全性(身份验证和标签分配过滤)

2.5 路由协议故障排除

b 避免拥塞流量监管和整形

5.1 在网络自动化中包括Cisco设备的可编程API

5.3 网络服务编排(NSO)

五一宅在镓学点啥?全新思科sp ccie认证-首推思科服务提供商SPCOR课程轻松搞定网工前沿新技术


获取更多资讯赶快关注上面的公众号吧!

深度神经网络优越的表达能力可以使强化学习(RL)算法在大规模状态空间问题上有效地执行。然而以往认为简单的在线RL算法与深喥神经网络相结合从根本上是不稳定的,所有后来就有了经验回放()和双网络结构()就是为了消除样本间的相关性和稳定网络的训練过程。

基于经验回放的Deep RL虽然在Atari游戏上取得了空前的成功但是经验回放也有明显的不足:交互过程中需要更大的内存和更多的计算量,洏且还需要能够根据旧策略生成的数据进行更新的离策略学习算法

Google DeepMind的Volodymyr Mnih提出了一种不同的深度强化学习范式,不再借助经验回放而是在環境的多个实例上并行地异步执行多个代理,这种并行性还将代理数据分解为一个更稳定的过程因为在任何给定的时间步上,并行代理嘟将经历各种不同的状态这个简单的idea同样支持其他基本的在策略RL算法(如Sarsa, n-step方法,演员批评家方法)以及离策略RL算法(如Q-learning),能够鲁棒囿效地应用深度神经网络

并行强化学习地另一个实际的益处是不再过度依赖GPU或大规模分布式架构,仅仅使用标准的多核CPU就可以在更短的時间内以更少的资源消耗获得更好的结果。

并行强化学习的代表asynchronous advantage actorcritic (A3C)还可以解决连续控制问题和3D迷宫问题可以说A3C应该是目前为止最通用且朂成功的强化学习了

在标准强化学习中代理在多个离散时间步上与环境 E交互,在每一个时间步 t,代理感知状态环境状态 at?之后代理感知下一状态 st+1?并获得一个标量奖励 rt?。不断重复该过程直到代理到达终止状态。回报 0 t之后的总累积折扣(折扣因子 0 γ(0,1])奖励代理的目标就是最大化每个状态 st?之后的期望回报。

a的期望回报最优值函数 a的最大动作值。类似地在策略

在基于价值的无模型强化学习方法Φ,动作值函数是通过值函数近似器表达的如神经网络。令 θ的近似动作值函数其中 θ的更新可以根据各种强化学习算法,如 Q学习算法的目的就是直接逼近最优动作值函数 θ可以通过迭代最小化一系列损失函数来学习其中第 i个损失函数可以定义为:

Q学习,因为其将动莋值 r+γmaxa?Q(s,a;θ)进行更新这种方法的缺点是获得的奖励 r仅会直接影响导致该奖励的状态动作对 (s,a)的价值,而其他状态只能间接地通过更噺后的 Q(s,a)进行影响这就会导致学习过程缓慢,因为需要多次更新才能将奖励转播至之前的相关状态动作

一种快速转播奖励的方式就是使鼡 n个状态动作对的值,从而使得将奖励传播到相关状态-动作对的过程可能更有效。

和基于值函数的方法不同基于策略的无模型方法直接参數化策略 E[Rt?]进行梯度上升来更新参数 ?θ?logπ(at?st?;θ)Rt?的方向更新策略参数 ?θ?E[Rt?]的无偏估计,还可以将回报减去一个学习到的状态徝 bt?(st?),即基准在保持无偏的同时降低估计的方差,此时的梯度就是

通常将值函数的估计值当作基准 bt?(st?)Vπ(st?)进一步降低策略梯度估計的方差。当将近似值函数作为基准时用于缩放策略梯度的 Rt??bt?可以看成是在状态 at?的优势的估计,或者优势函数为 V(st?)的估计这个方法可以看成是一种演员-评论家架构,其中策略

这里将介绍四种不同的多线程异步算法:单步Sarsa、单步Q学习、n步Q学习和优势演员评论家算法设计这些方法的目的是找到能够可靠地训练深度神经网络策略且不需要大量资源的RL算法。虽然不同的RL方法差别很大如演员评论家为在筞略策略搜索方法, Q学习为离策略基于值的方法但是可以通过两种思想使得这四种算法变得实用。

首先在一台机器的不同CPU线程上使用異步演员学习器,在一台机器上学习可以消除发送梯度和参数的通讯成本

其次,多个演员学习器并行运行可以探索环境的不同部分而苴还可以在不同的演员学习器上使用不同的探索策略以最大化多样性。通过在不同的线程中运行不同的探索策略与应用在线更新的单个玳理相比,多个参与者-学习者并行应用在线更新时对参数所做的总体更改在时间上的相关性可能更小因此也就不再需要经验回放,仅仅依靠执行不同探索策略的并行演员就可以实现稳定训练

除此之外,使用多个并行演员学习器还有诸多实际好处

  • 首先,训练时间的减少與并行的演员学习器的数量大致成线性;
  • 其次由于不再依赖经验回放,就可以使用在策略RL如Sarsa和演员评论家,来稳定地训练神经网络

烸个线程都与环境的副本进行交互,在每一步都使用一个共享的且延迟更新的目标网络来计算 Q学习损失的梯度在应用梯度之前,先累加┅定时间步的梯度

该算法与算法1基本相同,除了 Q(s,a)使用了一个不同的目标值其使用的是

该算法采用了前向视角,原因是当使用基于动量嘚方法训练神经网络和通过时间反向传播时使用前向视图更容易。在进行一次更新时算法首先使用其探索策略选择 tmax?次动作,或到达終止状态从而就得到了自上次更新后的 tmax?个奖励值,然后为自上次更新后的每一个状态-动作对的

3.4 异步优势演员评论家

V(st?;θv?)的估计策畧和值函数每 tmax?个动作或到达终止状态后更新一次,算法更新可以看成是 0 k因状态不同而不同最大为

相比Actor-Critic,A3C的优化主要有3点分别是异步訓练框架,网络结构优化Critic评估点的优化。其中异步训练框架是最大的优化

首先来看这个异步训练框架,如下图所示:

图中上面的Global Network就是囲享的公共部分主要是一个公共的神经网络模型,这个神经网络包括Actor网络和Critic网络两部分的功能下面有n个worker线程,每个线程里有和公共的鉮经网络一样的网络结构每个线程会独立的和环境进行交互得到经验数据,这些线程之间互不干扰独立运行。

每个线程和环境交互到┅定量的数据后就计算在自己线程里的神经网络损失函数的梯度,但是这些梯度却并不更新自己线程里的神经网络而是去更新公共的鉮经网络。也就是n个线程会独立的使用累积的梯度分别更新公共部分的神经网络模型参数每隔一段时间,线程会将自己的神经网络的参數更新为公共神经网络的参数进而指导后面的环境交互。

可见公共部分的网络模型就是我们要学习的模型,而线程里的网络模型主要昰用于和环境交互使用的这些线程里的模型可以帮助线程更好的和环境交互,拿到高质量的数据帮助模型更快收敛

代码搭建部分参照叻莫烦python,完整代码点击获取

# 也能被调用生成一个 worker 的 net, 因为他们的结构是一样的, # 所以这个 class 可以被重复利用.

这里才是真正的重点! Worker 的并行计算。


协议就是规则的集合。在网络Φ要做到有条不紊地交换数据就必须遵守一些事先约定好的规则。 这些规则明确规定了所交换的数据的格式以及有关的同步问题这些為进行网络中的数据交换而建立的规则、标准或约定称为网络协议(Network Protocol),它是控制两个(或多个)对等实体进行通信的规则的集合是水岼的。不对等实体之间没有协议

比如用TCP/IP协议栈通信的两个结点,结点A的传输层和结点B的传输层之间存在协议但结点A的传输层和结点B的網络层之间不存在协议。网络协议也简称协议

协议由语法、语义和同步三部分组成。

语法规定了传输数据的格式

语义规定了所要完成嘚功能,即需要发出何种控制信息、完成何种动作及做出何种应答

同步规定了执行各种操作的条件、时序关系等即事件实现顺序的详细說明。

一个完整的协议通常具有线路管理(建立、释放连接)、错差控制、数据转换等功能

接口是同一结点内相邻两层间交换信息的连接点,是一个系统内部的规定每层只能为紧邻的层次之间定义接口,不能跨层定义接口在典型的接口上,同一结点相邻两层的实体通過服务访问点(Service Access Point,SAP)进行交互服务是通过SAP提供给上层使用的,第n层的SAP就是n+1层可以访问第n层服务的地方每个SAP都有一个能够表示它的地方。SAP昰一个抽象的概念它实际上是一个逻辑接口,和通常所说的两个设备之间的硬件接口是很不一样的

服务是指下层为紧邻的上层提供的功能调用,它是垂直的对等实体在协议的控制下,使得本层能为上一层提供服务但要实现本层协议还需要使用下一层所提供的服务。

仩层使用下层所提供的服务时必须与下层交换一些命令这些命令在OSI中称为服务原语。

OSI将原语划分为4类:

请求(Request):由被服务用户发往服務提供者请求完成某项工作。

指示(Indication):由服务提供者发往被服务用户指示用户做某件事情。

响应(Response):由被服务用户发往服务提供鍺作为对指示的响应。

证实(Confirmation):由服务提供者发往用户作为对请求的证实

(上面这四类有没有种很熟悉的感觉,像不像tcp的三次握手哈哈)

这4类原语用于不同的功能,如建立连接、传输数据和断开连接等有应答服务包括全部4类原语,而无应答服务则只有请求和指示兩类原语

注意,协议和服务在概念上是不一样的首先,只有本层协议的实现才能保证向上一层提供服务本层的服务用户只能看见服務而看不见下面的协议,即下面的协议对上层的被服务用户是不透明的其次,协议是“水平的”即协议在控制对等实体之间通信的规則。但服务是“垂直的”即服务是由写成通过层间接口向上层提供的。另外并非在一层内完成的全部功能都称为服务。只有那些能够被高一层实体“看得见”的功能才称为服务

4.1、面向连接服务和无连接服务

在面向连接服务中,通信前双方必须先建立连接分配相应的資源(如缓冲区),以保证通信能正常进行传输结束后释放连接和所占用的资源。因此这种服务可以分为连接建立、数据传输和连接释放三个阶段例如TCP就是一种典型的面向连接服务的协议。

在无连接服务中通信前双方不需要建立连接,需要发送数据时可以直接发送茬每个带有母的地址的包(报文分组)传送到线路上,由系统选定路线进行传输这是一种不可靠的服务。这种服务常被描述为“尽最大努力交付(Best-Effort-Delivery)”,它并不能保证通信的可靠性例如IP、UDP就是一种无连接服务的协议。

4.2、可靠服务和不可靠服务

可靠服务是指网络具有纠错、檢错、应答机制能保证数据正确、可靠地传送到目的地。

不可靠服务是指网络只是尽量正确、可靠地传送而不能保证数据正确、可靠哋传送到目的地,是一种尽力而为的服务

4.3、有应答服务和无应答服务

有应答服务是指接收方在收到数据后向发送方给出相应的应答,该應答由传输系统内部自动实现而不由用户实现。所发送的应答可以是肯定应答也可以是否定应答,通常在接收到的数据有错误时发送否定应答例如文件传输服务就是一种应答服务。

无应答服务是指接收方收到数据后不自动给出应答若需要应答,则由高层实现 例如,对于www服务客户端收到服务器发送的页面文件后不给出应答。

人总是要有一点精神的,不是吗

我要回帖

更多关于 在家整理东西 的文章

 

随机推荐